高中數學與MAXIMA:

以下將依據教育部審核教科書內容,以 MAXIMA 軟體解答例題、隨堂練習及自我評量以供高中生參考

1

高三下數學

- 目次-

第一章 多項式函數的極限與導數

- 1-1 函數及其圖形
- 1-2 函數的極限
- 1-3 多項式函數的導數

第二章 導函數的應用

- 2-1 多項式函數圖形的描繪
- 2-2 函數的極值
- 2-3 三次函數的圖形
- 2-4 極值的應用

第三章 不等式

- 3-1 黎曼和與面積
- 3-2 定積分
- 3-3 定積分的應用

附錄一、微積分的基本定理

附錄二、牛頓法求平方根的近似值

附錄三、微分的乘法公式

附錄四、夾擠定理

- ※「plot2d([方程式],[x,最小值,最大值],[y,最小值,最大值])」;指令表示繪出方程式 之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。
- ※「abs(數值)」指令表示絕對值。
- ※「solve([變數算式],[變數])」指令表示求解。
- ※「limit (變數算式,變數,變數值)」指令表示變數值帶入變數算式,求得算式趨近值。
- ※「diff(多項式函數,函數,n次導數)」指令表示對一多項式函數之中特定函數進行n階導數。
- ※「factor(數值)」指令表示求因式分解。
- ※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。
- ※「ratsimp([算式]×[算式])」指令表示化簡算式。

運算簡介

+: MAXIMA 以+表示。

-: MAXIMA 以-表示。

× :MAXIMA 以*表示。

÷:MAXIMA 以/表示。

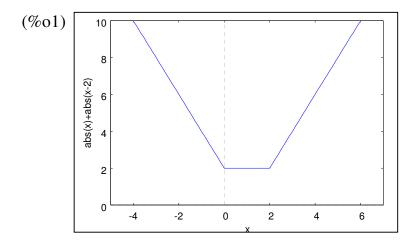
a²: MAXIMA 以 a² 表示。

 \sqrt{a} : MAXIMA 以 $a^{(1/2)}$ 或 sqrt(a)表示。

π:MAXIMA 以%pi 表示。

i 虚數: MAXIMA 以%i 表示。

第一章 多項式函數的極限與導數

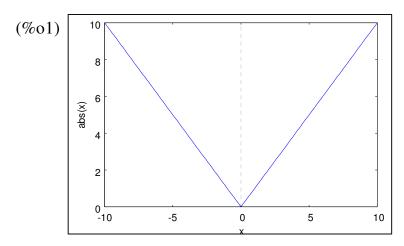

1-1 函數及其圖形

P.7

例題1: 試描出函數 y = |x| + |x - 2| 的圖形。

(%i1) plot2d([abs(x)+abs(x-2)],[x,-10,10]);

plot2d: some values were clipped.


※「plot2d([方程式],[x,最小值,最大值],[y,最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。
※「abs(數值)」指令表示絕對值。

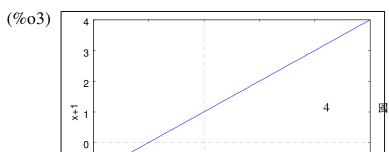
P.8

隨堂練習:試描出函數 y=|x| 的圖形,並寫出折點的坐標。

(%i1) plot2d([abs(x)],[x,-10,10]);

※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」;指令表示繪出方程式 之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。 ※「abs(數值)」指令表示絕對值。

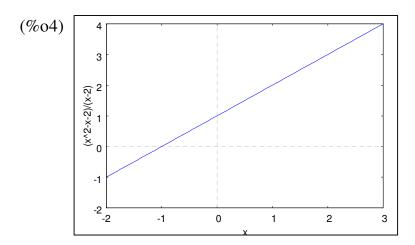
P.9


例題 2: 設
$$f(x) = x+1$$
, $g(x) = \frac{x^2 - x - 2}{x - 2}$

- (1) 求函數 f(x)與 g(x)的定義域,並問 f(x)與 g(x)是否相等?
- (2) 描出 y=f(x)與 y=g(x)的圖形
- (%i1) f:x+1; g: $(x^2-x-2)/(x-2)$;

$$(\%01)$$
 $x+1$

$$(\%02) \frac{x^2 - x - 2}{x - 2}$$


(%i3) plot2d([f],[x,-2,3],[y,-2,4]);

國立屏東教育大學應用數學系 研究助理-吳嘉興

(%i4) plot2d([g],[x,-2,3],[y,-2,4]);

※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」; 指令表示繪出方程式 之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。

P.10

隨堂練習:例題二中所給的兩個函數, f(x)=x+1 , $g(x)=\frac{x^2-x-2}{x-2}=\frac{(x-2)(x+1)}{x-2}$,若 f(x)=x+1之定義域限制在 $D=\{x|x\in R, x\neq 2\}$ 內,此時 f 與 g 是否為同一個函數?

P.11

隨堂練習: 設G(x) = [x]

- (1) 求函數值 $\left[\frac{3}{2}\right]$ 、 $\left[-\frac{3}{2}\right]$ 、[0.99]
- (2) 若[x]=0,則實數 x 取值的範圍為何?

(3) x 在什麼條件下會滿足[x]=x?

P.12

隨堂練習:根據上面"車資 f(x)"表成"里程數 x"的式子,試求 f(6)及 f(6.2)

例題 3: 設甲地的計程車跑 X 公里,該付的車資為 f(x)元(不計時),其中

$$f(x) \begin{cases} 70 & (0 < x < 1.5) \\ 75 + 5 \left[\frac{10}{3}x - 5\right] & x \ge 1.5 \end{cases}, 若某人付計程車資 120 元,請估計他搭乘計$$

程車的里程數 x 約多少公里

P.13

例題 4:已知自由落體下落 t 秒後的距離 h(t)為 $h(t) = \frac{1}{2}gt^2$,其中 g 是重力加速度, g = 9.8 (公尺/秒 2),

(1) 證明:從物體下落開始,第1秒內、第1秒~第2秒、第2秒~第3秒、第3秒~ 第4秒、…,物體落下的距離比為1:3:5:7:…

6

(%i1) h(t):=1/2*g*t^2;

$$(\%01)$$
 $h(t) := \frac{1}{2}gt^2$

(%i2) h(1);

(%o2)
$$\frac{g}{2}$$

(%i3) h(2)-h(1);

(%o3)
$$\frac{3g}{2}$$

(%i4) h(3)-h(2);

$$(\%04) \frac{5g}{2}$$

(%i5) h(4)-h(3);

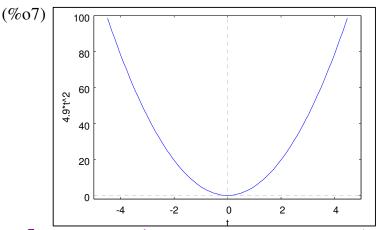
$$(\%05) \frac{7g}{2}$$

*由上可知第 1 秒內-h(1);、第 1 秒~第 2 秒 h(2)-h(1)、第 2 秒~第 3 秒 h(3)-h(2)、第 3 秒~第 4 秒 h(4)-h(3)、…,物體落下的距離比為 1:3:5:7:…。

(2) 若有一物體,自地面高 490 公尺處自由落下,如果不計空氣阻力,該物體從落下 至著地需經多少秒?

(%i6) solve([1/2*9.8*t^2=490],[t]);

rat: replaced 4.9 by 49/10 = 4.9


$$(\%06)$$
 [t=-10,t=10]

*自地面高490公尺處自由落下,該物體從落下至著地需經10秒。

(3) 試描出
$$y = \frac{1}{2}gt^2$$
的示意圖(0 \leq t \leq 1)

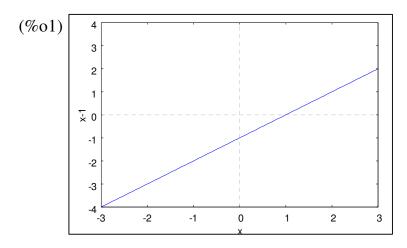
(%i7) plot2d([1/2*9.8*t^2],[t,-5,5],[y,-2,100]);

plot2d: some values were clipped.

※「solve([變數算式],[變數])」指令表示求解。

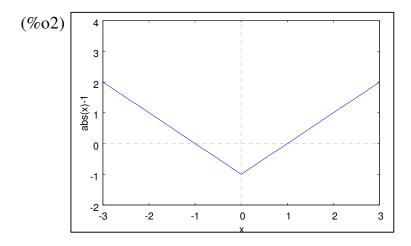
※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。

P.15 習題 1-1


Part A

- 1. 描出下列各函數的圖形。
- (1) y = x 1

(%i1) plot2d([x-1],[x,-3,3],[y,-4,4]);


plot2d: some values were clipped.

(2)
$$y = |x| - 1$$

(%i2) plot2d([abs(x)-1], [x,-3,3],[y,-2,4]);

plot2d: some values were clipped.

※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。

(3)
$$y = [x] - 1$$

(4)
$$y = \frac{(1-x)^2}{x-1}$$

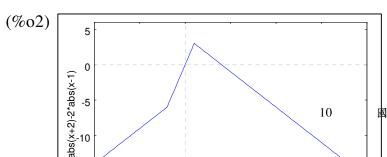
- 2. 第一題的四個函數中,哪些是一次函數?哪些是 R 上的遞增函數?
- 3. 甲、乙兩地相距 10 公里,阿寶騎摩托車以等速前進,由甲至乙花了 8 分鐘:阿明 開車以等速行進,比阿寶晚 1 分鐘自甲出發,卻比阿寶提早 2 分鐘抵達乙地。
- (1) 請在圖上畫出阿明開車的"距離 s-時間 t"圖,並寫出摩托車 s= $S_1(t)$ 及 s= $S_2(t)$ 的函數關係式。
- (2) 阿寶出發後,經多少分鐘後被阿明趕上?此時距甲地多少公里?
- 4. 已知自由落體下落 t 秒的距離(不計空氣阻力)為 $h(t) = \frac{1}{2}gt^2$ (單位:公尺),其中 g = 9.8 (公尺/秒²),是重力加速度。試問:若有一物體從地面上高為 1960 公尺處落下(不計空氣阻力),經多少秒後該物體會著地?

(%i1) solve([1/2*9.8*t^2=1960],[t]);

rat: replaced 4.9 by 49/10 = 4.9

(%01) [t=-20,t=20]

*自地面高 490 公尺處自由落下,該物體從落下至著地需經 20 秒。


※「solve([變數算式],[變數])」指令表示求解。

P.16

Part B

1. 試描出 y = |x+2|-2|x-1| 的圖形,並寫出折點的坐標。

(%i2) plot2d([abs(x+2)-2*abs(x-1)], [x,-10,20],[y,-20,5]);

- ※「plot2d([方程式],[x,最小值,最大值],[y,最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。
 ※「abs(數值)」指令表示絕對值。
- 2. 設 f(x) = [2x]與 g(x) = 2[x], 其中[]為高斯符號。
- (1) 在區間[-1,2)內畫出 y=f(x)與 y=g(x) 的圖形
- (2) 寫出 f(x)與 g(x)的值域 $f(R) \cdot g(R)$
- (3) 在 R 上 , f(x)與 g(x)是否相等?
- 3. 右圖為小明從家裡到學校騎自行車上學的"距離-時間"圖。圖中曾停下休息,然後加速前行,抵達學校總計花了25分鐘
- (1) 用"分段定義"寫出"s-t"的函數關係。(s=S(t))
- (2) 離家後,出發時前 10 分鐘為等速,其速度是多少(公里/分)?最後 5 分鐘也為等速,求其速度是多少(公里/分)?
- (3) 離家後第23分鐘,距離學校尚有多少公里?
- 4. $\mathop{\mathfrak{L}} f(x) = x^2 4x + 3$
- (1) 描出 y=f(x)的圖形,標出對稱軸、頂點座標、圖形的 x 截距
- (2) 求 f(x) 在閉區間[-1,3]上的最大值與最小值

1-2 函數的極限

P.18

隨堂練習:下表中,當 Δ t=-0.0001, 0.0001 時, 求對應的平均速度 $\bar{\nu}$

時段 3~3+∆t	3~2.9	3~2.99	3~2.999	•••	3~3.001	3~3.01	3~3.1
時間差∆t	-0.1	-0.01	-0.001		0.001	0.01	0.1
_平均速度 v=12+2Δt	11.8	11.98	11.998		12.002	12.02	12.2

P.20

隨堂練習:設運動質點 P 之位移 s 與時間 t 之關係式為 $s=S(t)=t^2$ (位移單位:公尺;時間單位:秒)

- (1) 時間由 t=3 到 t=5,質點 P 之平均速度是多少?
- (2) 質點在 t=4 時的速度是多少?
- (3) 質點 P 的運動是否為等速運動?

P.22

隨堂練習:下表中,(1) 當
$$\Delta x$$
=-0.0001,求 0.0001 時,求 $\frac{\Delta y}{\Delta x}$

(2)
$$\triangleq \Delta x = 0.0001$$
 , $\cancel{x} \frac{\Delta y}{\Delta x}$

Δx	3~2.9	3~2.99	3~2.999	::	3~3.001	3~3.01	3~3.1
$\frac{\Delta y}{\Delta x} = 2 + \Delta x$	-0.1	-0.01	-0.001	•	0.001	0.01	0.1

P.25

例題 1: 設 f(x)=c (c 是常數), 求 $\lim_{x\to 5} f(x)$ 。

例題 2: 設 f(x)=x+1、 $g(x)=\frac{x^2-x-2}{x-2}$, 求 $\lim_{x\to 2} f(x)$ 與 $\lim_{x\to 2} g(x)$ 。

(%i1) f(x) := x+1;

(%01) f(x) := x+1

 $(\%i2) g(x) := (x^2-x-2)/(x-2);$

(%o2)
$$g(x) := \frac{x^2 - x - 2}{x - 2}$$

(%i3) limit(f(x),x,2);

(%03)3

(%i4) f(2);

(%o4)3

(%i5) limit(g(x),x,2);

(%05)3

(%i6) g(2);

Division by 0

#0: g(x=2)

- -- an error. To debug this try debugmode(true);
- ※「limit (變數算式,變數,變數值)」指令表示變數值帶入變數算式,求得算式趨近 值。

P.26

隨堂練習: 設
$$f(x)=x-2$$
、 $g(x)=\frac{x^2-1}{x+2}$,求 $\lim_{x\to -2} f(x)$ 與 $\lim_{x\to -2} g(x)$ 。

(%i1) f(x) := x-2;

(%01) f(x) := x-2

 $(\%i2) g(x) := (x^2-1)/(x+2);$

(%o2)
$$g(x) := \frac{x^2 - 1}{x + 2}$$

(%i3) limit(f(x),x,-2);

(%o3) -4

(%i4) f(-2);

(%04) -4

14

(%i5) limit(g(x),x,-2);

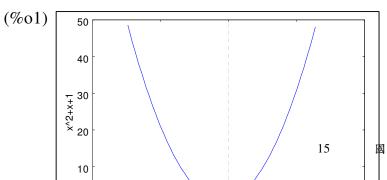
(%o5) infinity

(%i6) g(-2);

Division by 0

#0: g(x=-2)

-- an error. To debug this try debugmode(true);.


※「limit (變數算式,變數,變數值)」指令表示變數值帶入變數算式,求得算式趨近 值。

例題 3: 設
$$f(x)=x^2+x+1$$
、 $g(x)=\frac{x^3-1}{x-1}$

(1) 概略描出 y=f(x)的圖形,並求 $\lim_{x\to 1} f(x)$

(%i1) plot2d([x^2+x+1], [x,-10,10],[y,0,50]);

plot2d: some values were clipped.

 $(\%i2) f(x) := x^2 + x + 1;$

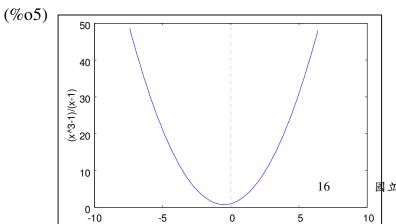
 $(\%02) f(x) := x^2 + x + 1$

(%i3) limit(f(x),x,1);

(%03)3

(%i4) f(1);

(%o4)3


※「limit (變數算式,變數,變數值)」指令表示變數值帶入變數算式,求得算式趨近 值。

※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」; 指令表示繪出方程式 之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。

(2) 概略描出 y=g(x)的圖形,並求 $\lim_{x\to 1} g(x)$

(%i5) plot2d([(x^3-1)/(x-1)], [x,-10,10],[y,0,50]);

plot2d: some values were clipped.

國立屏東教育大學應用數學系 研究助理-吳嘉興

 $(\%i6) g(x) := (x^3-1)/(x-1);$

(%o6)
$$g(x) := \frac{x^3 - 1}{x - 1}$$

(%i7) limit(g(x),x,1);

(%07)3

(%i8) g(1);

Division by 0

#0: g(x=1)

- -- an error. To debug this try debugmode(true);
- ※「limit (變數算式,變數,變數值)」指令表示變數值帶入變數算式,求得算式趨近值。
- ※「plot2d([方程式],[x,最小值,最大值],[y,最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。

P.27

隨堂練習:設 $f(x)=x^2+I$ 。 在圖(a)中,f(x)在 x=0 處沒有定義;在圖(b)中,f(x)在 x=0 處的定義改為 f(0)=2;在圖(c)中,f(x)的定義域為 R,y=f(x)的圖形是一條拋物線,f(0)=1

- (1) 在圖(a)中,求 $\lim_{x\to 0} f(x)$ (f(0) 沒有定義)
- (2) 在圖(b)中,求 $\lim_{x\to 0} f(x)$,並問 $\lim_{x\to 0} f(x) = f(0)$ 是否成立?
- (3) 在圖(c)中,求 $\lim_{x\to 0} f(x)$,並問 $\lim_{x\to 0} f(x) = f(0)$ 是否成立?

P.28

例題 4:

(1) 設
$$f(x)$$
 $\begin{cases} 1 & (x > 0) \\ -1 & (x < 0) \end{cases}$, 試問:當 $x \to 0$ 時, $f(x)$ 之極限是否存在?

(2) 設
$$h(x)$$
 $\begin{cases} 1 & (x > 0) \\ 0 & (x = 0) \end{cases}$,試問:當 $x \to 0$ 時, $h(x)$ 之極限是否存在? $-1 & (x < 0) \end{cases}$

(3) 設
$$g(x) = [x]$$
(高斯函數),試求 $\lim_{\Delta x \to 0^+} g(2 + \Delta x)$ 及 $\lim_{\Delta x \to 0^-} g(2 + \Delta x)$

P.31

例題 5: 設
$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 是 n 次多項式函數,證明: $\lim_{\Delta x \to c} p(x) = p(c)$

隨堂練習: 求
$$\lim_{x\to 1} (-2x^5 + 3x^4 - x^2 + 4x + 6)$$

(%o1) 10

※「limit (變數算式,變數,變數值)」指令表示變數值帶入變數算式,求得算式趨近值。

P.32

例題 6: 求下列各式的極限值:

$$(1) \lim_{x\to 0} \left(\frac{x^3-1}{x-1}\right)$$

 $(\%i1) limit((x^3-1)/(x-1),x,0);$

(%o1) 1

(2)
$$\lim_{x\to 2} \left(\frac{x^2+x-1}{x^3+1} \right)$$

 $(\%i2) limit((x^2+x-1)/(x^3+1),x,2);$

$$(\%02) \frac{5}{9}$$

(3)
$$\lim_{x \to 1} \left(\frac{x^3 - 1}{x - 1} \right)$$

 $(\%i3) limit((x^3-1)/(x-1),x,1);$

(%03)3

※「limit (變數算式,變數,變數值)」指令表示變數值帶入變數算式,求得算式趨近 值。

P.33

例題7: 求下列各式的極限值:

(1)
$$\lim_{x \to -2} (x^3 + 2x^2 - 5x - 6)$$

 $(\%i1) limit((x^3+2*x^2-5*x-6),x,-2);$

(%01)4

(2)
$$\lim_{x\to -2} \left(\frac{x^2+x-2}{x+2} \right)$$

 $(\%i2) limit((x^2+x-2)/(x+2),x,-2);$

(%02) -3

(3)
$$\lim_{x \to -2} \left(x^3 + 2x^2 - 5x - 6 + \frac{x^2 + x - 2}{x + 2} \right)$$

(%i3) limit($(x^3+2*x^2-5*x-6)+(x^2+x-2)/(x+2),x,-2$);

(%o3) 1

(4)
$$\lim_{x \to -2} \left[\left(x^3 + 2x^2 - 5x - 6 \right) \cdot \left(\frac{x^2 + x - 2}{x + 2} \right) \right]$$

19

(%i3) limit($(x^3+2*x^2-5*x-6)*(x^2+x-2)/(x+2),x,-2$);

(%o3) - 12

※「limit (變數算式,變數,變數值)」指令表示變數值帶入變數算式,求得算式趨近值。

隨堂練習: 求下列各式的極限值:

(1)
$$\lim_{x\to 0} (x^2 - 3x + 2)$$

 $(\%i1) limit((x^2-3*x+2),x,0);$

(%01)2

(2)
$$\lim_{x\to 0} \left(\frac{x^3 - 5x^2 + x}{x} \right)$$

 $(\%i2) limit((x^3-5*x^2+x)/x,x,0);$

(%02)1

(3)
$$\lim_{x\to 0} \left(x^2 - 3x + 2 - \frac{x^3 - 5x^2 + x}{x} \right)$$

(%i3) limit $((x^2-3*x+2)-((x^3-5*x^2+x)/x),x,0);$

(%o3)1

※「limit (變數算式,變數,變數值)」指令表示變數值帶入變數算式,求得算式趨近值。

P.34 習題 1-2

Part A

- 1. 有一物體從地面上高為 25 呎處自由落下(只受地心引力作用,而不加任何外力),如果不計空氣阻力,那麼落下後 t 秒的高度為 $S(t) = -16t^2 + 25$ 。請計算:
- (1) 時間從 1 秒到($1+\Delta t$)秒的平均速度 $\frac{\Delta s}{\Delta t}$ 是多少?
- (2) 物體自由落下後,"t=1 秒"之瞬時速度 $v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$
- 2. 設 $f(x)=x^3$,點 P(1,f(1))是 y=f(x)之圖形 Γ 上一定點,通過 P 點作一割線與 Γ 交 於 另一點 $Q(1+\Delta x,f(1+\Delta x))$

- (1) 計算 $\Delta y = f(5 + \Delta x) f(1)$
- (2) 計算割線 PQ 的斜率 $\frac{\Delta y}{\Delta r}$
- (3) 當 Q 點沿著 Γ 趨近時,割線 PQ 的斜率 $\frac{\Delta y}{\Delta x}$ 是否會趨近某一個定值?(計算 $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$)
- 3. 求下列各式的極限:
- $(1) \quad \lim_{\Delta x \to 0} \left(5 + \Delta x \right)$

假設 Δx 為 t , 進行計算

(%i1) limit(5+t,t,0);

(%01)5

(2)
$$\lim_{x\to 1} (x^2 + 7x - 3)$$

 $(\%i2) limit(x^2+7*x-3,x,1);$

(%02)5

(3)
$$\lim_{x\to 0} (2x-1)^5$$

(%i3) limit((2*x-1)^5,x,0);

(%o3) -1

4. 求下列各式的極限:

(1)
$$\lim_{x\to 0} \frac{x^2-1}{x+1}$$

 $(\%i1) limit((x^2-1)/(x+1),x,0);$

(%o1) -1

(2)
$$\lim_{x \to -1} \frac{x^2 - 1}{x + 1}$$

(%i2) limit($(x^2-1)/(x+1),x,-1$);

(%02) - 2

- ※「limit (變數算式,變數,變數值)」指令表示變數值帶入變數算式,求得算式趨近值。
- 5. $\Re 4 x^2 \le f(x) \le 4 + x^2(-2 < x < 2)$, $\Re \lim_{x \to 0} f(x)$

P.35

Part B

- 1. 設 f(x) $\begin{cases} 2x & (if \ x > 1) \\ x^2 + 1 & (if \ x < 1) \end{cases}$, 之圖形如右,試求:
- (1) $\lim_{x \to 1^+} f(x) \not \ge \lim_{x \to 1^-} f(x)$
- (2) $\lim_{x\to 1} f(x)$ 是否存在?若極線存在,其值為何?
- (1) $\lim_{x\to 0^+} g(x) \not \ge \lim_{x\to 0^-} g(x)$
- (2) $\lim_{x\to 0} g(x)$ 是否存在?
- 3. 設G(x) = [x](高斯函數)
- (1) $\Re \lim_{\Delta x \to 0^+} G(2 + \Delta x) \mathcal{A} \lim_{\Delta x \to 0^-} G(2 + \Delta x)$
- (2) $\lim_{\Delta x \to 0} G(2 + \Delta x)$ 是否存在?
- $(3) \quad \not \stackrel{1}{x} \lim_{\Delta x \to 0} G(2.5 + \Delta x)$

4. 如何選取常數 a,使得極限 $\lim_{x\to 3} \frac{x^2-2x+a}{x-3}$ 存在,並求此極限值

1-3 多項式函數的導數

P.37

例题 1:求函數 $f(x)=x^3$ 在 x=1 處的導數 f'(1) 。

 $(\%i1) f(x) := x^3;$

 $(\%01) f(x) := x^3$

(%i2) diff(f(x),x,1);

 $(\%02) 3x^2$

(%i3) x:1;

(%o3) 1

 $(\%i4) 3*x^2;$

(%o4)3

※「diff(多項式函數,函數,n次導數)」指令表示對一多項式函數之中特定函數進行n階導數。

隨堂練習: 求函數 $g(x)=x^2$ 在 x=-1 處的導數 g'(-1) 。

 $(\%i1) f(x) := x^2;$

 $(\%01) f(x) := x^2$

(%i2) diff(f(x),x,1);

(%02) 2x

(%i3) x:-1;

(%o3) -1

(%i3) 2*x;

(%03) - 2

※「diff(多項式函數,函數,n次導數)」指令表示對一多項式函數之中特定函數進行n階導數。

P.38

例题 2:試問:函數 f(x) = |x| 在 x = 0 處的"導數"是否存在?

隨堂練習:函數 f(x) = |x| ,在 x=3 的導數 f'(3) 是否存在?又在 x=-2 的導數 f'(-2) 是否存在?

P.39

例題3:證明:常數函數 f(x)=c 對任意一點 x_0 之導數 $f'(x_0)$

例題 4:

- (1) 試證:若函數 f(x)在 x=c 處的"導數"存在,則函數 f(x)在 x=c 處是"連續"
- (2) 並舉例說明:其逆敘述不為真

P.41

隨堂練習:已知函數 y=f(x)的圖形在 x=2 處的切線方程式為 y+3=-5(x-2),試求:

- (1) f(2) 及 f'(2)
- (%i1) f(x) := -5*(x-2)-3;
- (%01) f(x) = (-5)*(x-2)-3
- (%i2) f(2);
- (%02) -3
- (%i3) diff(f(x),x,1);
- (%03) -5
- (%i4) x:2;
- (%04)2
- (%i5) -5
- (%05) -5
- ※「diff(多項式函數,函數,n次導數)」指令表示對一多項式函數之中特定函數進行n階導數。
- (2) 函數 y=f(x)的圖形在 x=2 處的法線方程式

例題5: 已知點 $P(2, \frac{8}{3})$ 在函數 $y = \frac{1}{3}x^3$ 的圖形 Γ 上,試求 Γ 上:

- (1) 以 P 為切點之切線斜率 m 及切線方程式
- (2) 通過 P 點知法線方程式

P.39

隨堂練習:在函數 $f(x)=x^2$ 圖形 Γ 上,試求:

- (1) 過頂點 O(0,0)之切線方程式。
- (2) 過點 P(-1,1) 之切線方程式。

例題 6:設函數 $f(x)=x^2+x$ 的圖形為 Γ ,試求通過 Γ 外一點 Q(1,1)且與 Γ 相切的直線方程式。

P.43

隨堂練習:試求通過 Q(0,-1) 且與函數 $y=x^2$ 之圖形相切的直線方程式,並求出對應的切點座標(有兩解)

例題7:設 Γ : $y = \frac{1}{4}x^2$, 點 P(2,1) 在拋物線 Γ 上

- (1) 試求 Γ 的焦點F。
- (2) 求通過 P(2,1)之切線 L 的方程式。
- (3) 說明:由焦點 F 發出的光線,經 P 點反射後,必與對稱軸(v 軸平行)。

P.46

例題 8: 有一物體從高為 25 呎處自由落下,經過 t 秒後的高度是 $S(t)=-16t^2+25$,試問;當 $t=\frac{1}{2}$ (秒)時,該自由落體的速度?

 $(\%i1) s(t) := -16 * t^2 + 25;$

 $(\%01) s(t) = (-16t)^2 + 25;$

(%i2) diff(s(t),t,1);

- (%02) 32t
- (%i3) t:1/2;
- $(\%o3) \frac{1}{2}$
- (%i4) -32*t;
- (%04) 16
- ※「diff(多項式函數,函數,n次導數)」指令表示對一多項式函數之中特定函數進行n階導數。

隨堂練習:自由落體落下 t 秒後的距離為 $h(t) = \frac{1}{2}gt^2$, (g 是重力加速度)

- (1) 試求自由落體在 t=2 秒的速度?
- $(\%i1) h(t):=1/2*g*t^2;$

$$(\%01) \ h(t) := \frac{1}{2} gt^2$$

- (%i2) diff(h(t),t,1);
- (%o2) gt
- (%i3) t:2;
- (%o3) 2
- (%i4) g*t;
- (%o4) 2g
- (2) 試求落體在 t=2 秒的加速度?
- (%i5) t:1;
- (%o5) 1
- (%i6) g*t;

(%06) g

t=2 秒的加速度為 2 秒時的加速度減 1 秒時的加速度

(%i7) 2*g-g

(%o7) g

※「diff(多項式函數,函數,n次導數)」指令表示對一多項式函數之中特定函數進行n階導數。

P.49

隨堂練習:利用定理及微分公式(一),求下列多項式函數的導函數

 $(1) f(x) = x^3$

 $(\%i1) diff(x^3,x,1);$

 $(\%01) 3x^2$

- (2) $g(x) = 5x^3$
- $(\%i2) diff(5*x^3,x,1);$

 $(\%02) 15x^2$

(3) $p(x) = 5x^3 - 4x$

 $(\%i3) diff(5*x^3-4*x,x,1);$

 $(\%03) 15x^2-4$

※「diff(多項式函數,函數,n次導數)」指令表示對一多項式函數之中特定函數進行n階導數。

例題 9: 設 $f(x) = x^4 - 2x^3 - x^2 + 5x + 3$

- (1) 試求 f'(x) 及 f'(1)
- $(\%i1) f(x) := x^4 2*x^3 x^2 + 5*x + 3;$
- $(\%01) f(x) := x^4 2x^3 x^2 + 5x + 3$
- (%i2) diff(f(x),x,1);
- $(\%02) 4x^3-6x^2-2x+5$
- (%i3) x:1;
- (%o3)1
- $(\%i4) 4*x^3-6*x^2-2*x+5;$
- (%o4)1
- (2) 試求 f"(x) 及 f"(1)
- (%i5) kill(all);
- (%o5) done
- $(\%i6) f(x) := x^4 2*x^3 x^2 + 5*x + 3;$
- $(\%06) f(x) := x^4 2x^3 x^2 + 5x + 3$
- (%i7) diff(f(x),x,2);
- $(\%07) 12x^2-12x-2$
- (%i8) x:1;
- (%o8) 1
- (%i9) 12*x^2-12*x-2;
- (%09) -2
- ※「diff (多項式函數, 函數, n 次導數)」指令表示對一多項式函數之中特定函數進行 n 階導數。

P.50

隨堂練習:設 $P(x) = \frac{1}{3}x^3 + x^2 - 3x + 5$,試求:

- (1) P'(x)及P'(0)
- $(\%i1) p(x) := (1/3)*x^3 + x^2-3*x+5;$
- (%o1) $p(x) := \frac{1}{3}x^3 + x^2 + (-3)x + 5$
- (%i2) diff(p(x),x,1);
- $(\%02) x^2 + 2x 3$
- (%i3) x:0;
- (%03)0
- $(\%i4) x^2+2*x-3;$
- (%04) -3
- (2) P''(x) 及 P''(1)
- (%i5) kill(all);
- (%o5) done
- $(\%i6) p(x) := (1/3)*x^3 + x^2-3*x+5;$
- (%06) $p(x) := \frac{1}{3}x^3 + x^2 + (-3)x + 5$
- (%i7) diff(p(x),x,2);
- (%07) 2x+2
- (%i8) x:1;
- (%08) 1
- (%i9) 2*x+2
- (%o9) 4

※「diff(多項式函數,函數,n次導數)」指令表示對一多項式函數之中特定函數進

行n階導數。

例題 10: 設 $f(x) = 2x^3 + 3x^2 - 12x + 1$ 之圖形為 Γ ,試求的水平切線及對應的切點坐標。

P.51

隨堂練習:設二次函數 $f(x)=x^2-4x+7$ 之圖形為 Γ (拋物線)

- (1) 求的水平切線及對應的切點。
- (2) 試問:水平切線對應的切點是否為拋物線的頂點?

P.51 習題 1-3

Part A

- 1. 設 $f(x)=x^3$, 請按下列程序求出導數 f'(2)
- (1) 求出 y 差量 $\Delta y = f(2+\Delta x) f(2)$ ($\Delta x \neq 0$)
- (2) 化簡差商 $\frac{\Delta y}{\Delta x} = \frac{f(2 + \Delta x) f(2)}{\Delta x}$
- (3) 求出極限 $f'(2) = \lim_{\Delta x \to 0} \frac{f(2 + \Delta x) f(2)}{\Delta x}$
- 2. 計算下列各函數在 x=3 的導數
- (1) f(x) = 5

(%i1) diff(5,x,1);

(%01)0

(%i2) x:3;

(%02)3

(%i3)0

(%03)0

(2) g(x) = -7x + 2

(%i4) kill(all);

(%o4) done

(%i5) diff(-7*x+2,x,1);

(%05) -7

(%i6) x:3;

(%06)3

(%i7) - 7;

(%07) - 7

(3) $h(x) = x^2 - 2x$

(%i8) kill(all);

(%o8) done

 $(\%i9) diff(x^2-2*x,x,1);$

(%09) 2x-2

(%i10) x:3

(%o10) 3

(%i11) 2*x-2;

(%o11) 4

- ※「diff(多項式函數,函數,n次導數)」指令表示對一多項式函數之中特定函數進行n階導數。
- 3. 於下列所給的函數 y=f(x)的圖形 Γ 上,試求 Γ 於 x=1 處的切點 P(1,f(1)),切線斜率 f'(1) 及切線方程式 y-f(1)=f'(1)(x-1)
- (1) $f(x) = -x^2 + 2$
- (2) $f(x) = \frac{1}{2}x^2 + x$
- 4. 已知函數 y=g(x)的圖形在 x=3 處之法線方程式為 $y-5=-\frac{2}{3}(x-3)$
- (1) 求 g(3)及 g'(3)
- (%i1) g(x) := (-2/3)*(x-3)+5;

(%o1)
$$g(x) := \frac{-2}{3}(x-3)+5$$

(%i2) g(3);

(%o2) 5

(%i3) diff(g(x),x,1);

$$(\%o3) -\frac{2}{3}$$

(%i4) x:3;

(%o4) 3

(%i5) -2/3;

$$(\%05) -\frac{2}{3}$$

※「diff(多項式函數,函數,n次導數)」指令表示對一多項式函數之中特定函數進行n階導數。

- (2) y=g(x)之圖形在 x=3 處的切線方程式
- 5. 有一個質點 P 在直線上運動,其位移 s 與時間 t 之函數關係為 S(t)=t3-t, 試求:
- (1) 質點 P 在 t=2 至 t=4 之間的平均速度
- $(\%i1) s(t) := t^3-t;$
- (%01) s(t):= t^3 -t
- (%i2) (s(4)-s(2))/(4-2);
- (%02)27
- (2) 質點 P 在 t=2 的(瞬時)速度及加速度
- (%i3) diff(s(t),t,1);
- $(\%03) 3t^2-1$
- (%i4) diff(s(t),t,2);
- (%04)6t
- (%i5) t:2;
- (%05)2
- (%i6) 3*t^2-1;
- (%06) 11
- (%i7) 6*t;
- (%o7) 12
- ※「diff(多項式函數,函數,n次導數)」指令表示對一多項式函數之中特定函數進行n階導數。

6. 利用"n 次多項式函數 P(x)之導函數公式", 求導函數 P'(x)、P''(x) 與導數 P'(1)、P''(1)

- (1) $P(x) = x^6 x^4 + 2x 3$
- (a) P'(x)
- $(\%i1) p(x) := x^6 x^4 + 2 x 3;$
- (%01) p(x):= x^6-x^4+2x-3
- (%i2) diff(p(x),x,1);
- $(\%02) 6x^5 4x^3 + 2$
- (b) P''(x)
- (%i3) diff(p(x),x,2);
- $(\%03) 30x^4 12x^2$
- (c) P'(1)
- (%i4) x:1;
- (%o4) 1
- (%i5) 6*x^5-4*x^3+2;
- (%o5) 4
- (d) P''(1)
- (%i6) 30*x^4-12*x^2
- (%06) 18
- (2) $P(x) = \frac{1}{4}x^4 + \frac{1}{3}x^3 \frac{1}{2}x^2 + x 5$
- (a) P'(x)
- (%i8) kill(all);

(%o8) done

$$(\%i9) p(x) := (1/4) *x^4 + (1/3) *x^3 - (1/2) *x^2 + x - 5;$$

(%09)
$$P(x) := \frac{1}{4}x^4 + \frac{1}{3}x^3 + (-\frac{1}{2})x^2 + x - 5$$

(%i10) diff(p(x),x,1);

$$(\%010) x^3 + x^2 - x + 1$$

- (b) P''(x)
- (%i11) diff(p(x),x,2);
- $(\%011) 3x^2 + 2x 1$
- (c) P'(1)
- (%i12) x:1;
- (%012)1
- $(\%i13) x^3+x^2-x+1;$
- (%013)2
- (d) P''(1)
- $(\%i14) 3*x^2+2*x-1;$
- (%014)4
- ※「diff(多項式函數,函數,n次導數)」指令表示對一多項式函數之中特定函數進行n階導數。

P.53

Part B

1. 試求通過曲線 Γ : $y=x^3+1$ 外一點P(0,3)與曲線 Γ 相切的直線方程式,並求切點

Q的坐標。

- 2. 已知 Q(1,-3) 在曲線 $\Gamma: y=x^3-4x$,以點 Q(1,-3) 為切點之切線為 L,試求:
- (1) L 的斜率
- (2) L 的方程式
- (3) L 與 Γ 之所有交點坐標

第一章 綜合練習

P.54

Part A

- 1. 下圖為阿寶騎摩托車旅的"距離 S-時間 T"的關係圖
- (1) 上午 8 點離家至下午 2 點抵達目的,一共騎了多少公里?
- (2) 第一次停駛休息是離家多遠時?休息時間多久?
- (3) 第二次停駛(午餐、休息), 共花多久時間?
- (4) 哪一個時段之"平均速度"最快?停駛除外,哪一個時段之平均速度最慢?

38

(5) 上午9點10分時,離家多遠?

- (6) 摩托車從家行駛至下列距離時,是什麼時間?
- (7) 計算摩托車"全部行駛時間"(停駛時間除外)的平均速度

P.55

- 有 A、B 兩座米倉,分別儲米 50 公噸、30 公噸,從 A 倉運米到 C、D 兩村其運 費分別為 20 元/公噸、26 元/公噸;從 B 倉運米至 C、D 兩村其運費分別為 18 元/ 公頓、22 元/公頓。現已知 C 村需米 35 公噸、D 村需米 45 公頓,試算出如何配送 運米費用最低?
- (1) 設A倉運米 X 公噸至 C 地,則 A 倉運米至 D 地多少公噸? B 倉運米至 C 地多少 公噸?B 倉運米至 D 地多少公噸?
- (2) 運費 f(x) = ?(以 x 的函數表示)
- (3) 當 x=a 公噸時,運費 f(a)最小,求 a 及 f(a)
- (4) 畫出 y = f(x)的圖形

Part B

1. 有一個儲水槽,附有進水、出水的水龍頭,每單位時間進水量、出水量皆為固定 的。從某一時刻(計作 0)開始,前 4 分鐘內,只進水不出水,第 4 分到 12 分既進 水也出水,得到"水量 v-時間 x"的關係圖:

39

- (1) 當,將 y 表示成 x 的函數。
- (2) 前 4 分鐘,每分鐘進水多少公升?
- (3) 當時,計算每分鐘放水多少公升?
- (4) 若從第12分鐘後,只出水不進水,求v與x的關係式,並圖示

- 2. 求下列函數的極限
- (1) $\lim_{x \to -2} x^3 + 3x + 5$
- $(\%i1) limit(x^3+3*x+5,x,-2);$
- (%01) 9

(2)
$$\lim_{x \to 3} \frac{x^3 - 27}{x - 3}$$

 $(\%i2) limit((x^3-27)/(x-3),x,3);$

(%02)27

(3)
$$\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right)$$

 $(\%i3) limit((1/(1-x))-(3/(1-x^3)),x,1);$

(%03)

※「limit (變數算式,變數,變數值)」指令表示變數值帶入變數算式,求得算式趨近值。

P.56

- 3. 若極限 $\lim_{x\to 2} \frac{x^3 ax 4}{x 2}$ 存在,試求 a 值及極限值
- 4. 設 $y=x^3-3x$ 之圖形為 Γ ,求 Γ 的水平切線及對應的切點坐標
- 5. 設 $y=x^3-3x+5$ 之圖形為 Γ ,求"斜率為1 且與 Γ 相切"的切線方程式及對應的切點 坐標。
- 6. 設 $f(x) = x^5$,試用 導函數的定義: $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) f(x)}{\Delta x}$; 證明: $f'(x) = 5x^4$

第二章 導函數的應用

2-1 多項式函數圖形的描繪

P.61

例題1: 試討論函數 $f(x)=x^3-3x+1$ 的遞增與遞減的區間。

P62

隨堂練習:試討論函數 $f(x)=x^3+x^2-x+1$ 的遞增與遞減的區間。

例題 2: 設函數 $f(x) = x^4 - 4x^3 - 2x^2 + 12x + 1$

- (1) 討論函數 f(x)的遞增與遞減的區間。
- (2) 找出函數 f(x)圖形遞增、遞減變化的轉折點。
- (3) 根據(1)與(2)的結果,描繪 f(x)在區間[-2,4]的大略圖形。

P63

例題3:設函數 $f(x)=x^3+ax^2+ax+2$ 在實數 R 上為遞增函數,試求 a 值的範圍。

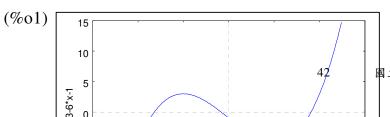
P64

隨堂練習:承接例題 3.當函數 $f(x)=x^3+ax^2+ax+2$ 在實數 R 上為遞增函數時,則下列哪些圖形可能為函數 y=f(x)的部分圖形。

P66

例題 4:討論函數 $f(x)=x^4-6x^2+3$ 圖形的遞增、遞減與凹向性。

P68

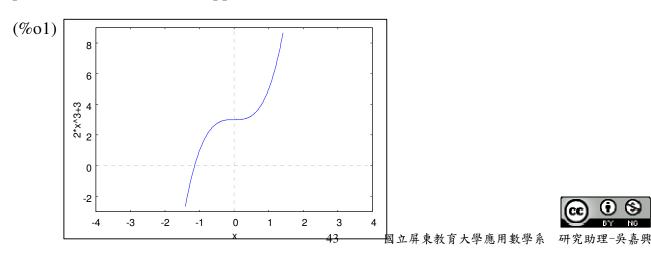

隨堂練習:延續例題 2 ,討論函數 $f(x) = x^4 - 6x^2 + 3$ 圖形的凹向性,並求函數圖形的反曲點。

P69

例題5: 試利用微分方程描繪函數 $f(x)=2x^3-6x-1$ 的圖形。

(%i1) plot2d($[2*x^3-6*x-1],[x,-3,3],[y,-15,15]$);

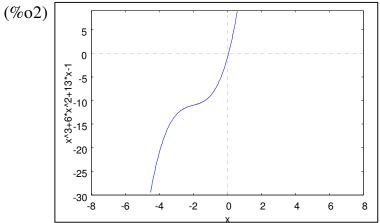
plot2d: some values were clipped.


※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」; 指令表示繪出方程式 之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。

P69

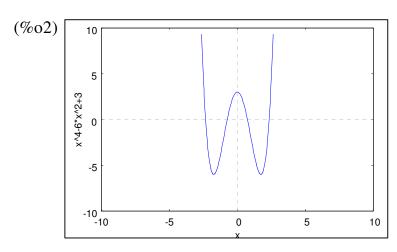
例題 6:

(1) 描繪函數 $f(x) = 2x^3 - 6x^2 + 6x + 3$, 並標示函數圖形的反曲點及過反曲點的切線。 (%i1) plot2d($[2*x^3-6*x+6*x+3]$,[x,-4,4],[y,-3,9]);


plot2d: some values were clipped.

(2) 描繪函數 $g(x)=x^3+6x^2+13x-1$,並標示函數圖形的反曲點及過反曲點的切線。 (%i2) plot2d([x^3+6*x^2+13*x-1],[x,-8,8],[y,-30,9]);

plot2d: some values were clipped.


※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。

P68

隨堂練習:延續例題 4 ,得知的訊息,描繪函數 $f(x) = x^4 - 6x^2 + 3$ 的圖形。

 $(\%i2) plot2d([x^4-6*x^2+3],[x,-10,10],[y,-10,10]);$

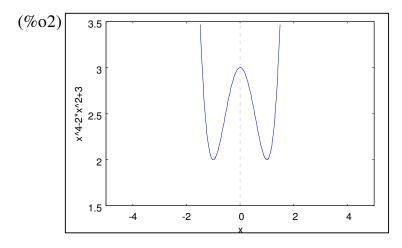
plot2d: some values were clipped.

※「plot2d([方程式],[x,最小值,最大值],[y,最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。

P.72 習題 2-1

Part A

- 1. 試討論下列各函數的遞增與遞減區間:
- (1) $f(x) = x^2 2x + 4$
- (2) $g(x) = -x^3 6x^2 + 15x 7$
- (3) $h(x) = x^4 2x^3 + 2x + 1$
- 2. 試討論下列各函數的凹向性,並求其反曲點:
- (1) $f(x) = x^3 + 3x^2 4x$
- (2) $g(x) = x^4 4x^3 + x + 5$
- (3) $h(x) = x^5 5x^4$



- 3. 某產品生產 x 單位所需成本為 $C(x) = x^3 9x^2 + 15x + 50$ (萬元),其中 $x \ge 1$,求生產成本在何種範圍內為遞增。
- 4. 設函數 $f(x) = -x^3 2x^2 + ax + 3$ 在實數 R 上為遞減函數,試求 a 值的範圍。

5. 描繪函數 $f(x) = x^4 - 2x^2 + 3$ 的圖形。

(%i2) plot2d([x^4-2*x^2+3],[x,-5,5],[y,1.5,3.5]);

plot2d: some values were clipped.

※「plot2d([方程式],[x,最小值,最大值],[y,最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。

Part B

- 1. 已知函數僅在區間[-1,3]上為遞減函數,試求函數圖形 y=f(x)的反曲點坐標
- 2. 試證:當 $x \ge 0$ 時,函數 $f(x) = x^3$ 的圖形恆在函數 $g(x) = 3x^2 4x 1$ 圖形的上方。(提示:令 h(x) = f(x) g(x),證明當 $x \ge 0$ 時,h(x) > 0 恆成立)
- 3. 試證:三次函數 $f(x)=ax^3+bx^2+cx+d$, $a\neq 0$ 在實數 R 上為遞增函數的充要條件為 a>0 且 $b^2-3ac\leq 0$ 。

2-2 函數的極限

P74

隨堂練習:試討論下列函數的極大值與極小值

- (1) f(x) = 3
- (2) g(x) = 2x 1
- (3) h(x) = 2x 1, $(1 \le x \le 5)$
- (4) $p(x) = x^2 1$
- (5) $q(x) = x^2 1, (1 \le x \le 5)$

P.77

例題1: 試求函數 $f(x)=x^3-6x+9x+4$, $x \in [-1,4]$ 的最大值與最小值。

隨堂練習:試求下列函數最大值與最小值:

(1) $f(x) = x^3 + 3x^2 - 9x + 1, x \in [-1, 2]$

(2) $f(x) = x^3, x \in [-2, 2]$

P.78

例題 2:試求函數 $f(x)=3x^4+4x^3-12x^2+4$ 在區間[-3,2]的極大值、極小值、最大值與最小值。

P.79

隨堂練習:試求函數 $f(x) = -x^4 + 2x^2 - 1$ 在區間[-2,2]的極大值、極小值、最大值與最小值。

P.80

例題 3:延續例題 2,試用極值的二階檢定法,求函數 $f(x)=3x^4+4x^3-12x^2+4$ 的極大值 與極小值。

P.81

隨堂練習:試求函數 $f(x) = x^4 - 4x^3 + 4x^2 + 1$ 的極大值與極小值。

例題 4:試求函數 $f(x) = x^5 - 10x^3 - 20x^2 - 15x + 150$ 的極大值與極小值。

P.82

随堂練習:求下列函數的極大值與極小值。

- (1) $f(x) = x^4 4x^3 + 4x^2 + 1$
- (2) $g(x) = x^3 3x^2 + 3x 1$

例題 5: 設函數 $f(x)=x^3+ax^2+bx-c$,其中 $a \cdot b \cdot c$ 為常數。若 f(x)在 x=-1 處有極值 2,且在 x=3 處也有極值,試求 $a \cdot b \cdot c$ 之值。

隨堂練習:設函數 $f(x)=x^3+ax^2+bx+c$,其中 a、b、c 為常數。若 f(x)在 x=1 處有極值 2,且在 x=-2 處也有極大值,試求 a、b、c 之值。

P.83 習題 2-2

Part A

- 1. 試求下列各函數的極大值與極小值:
- (1) $f(x) = -x^3 + 3x^2 4x + 5$
- (2) $g(x) = 4x^3 + 3x^2 36x + 5$, $x \in [-2, 2]$
- (3) $h(x) = x^4 4x^3 + 16x + 5$
- (4) $p(x) = (x^2 + x 1)^2 x \in [0, 4]$
- 2. 若函數 $f(x) = x^3 ax^2 + (a+6)x + 2$ 沒有極值,則 a 的範圍為何?
- 3. 設函數 $f(x)=ax^3+x^2+bx+c$, 其中 $a \cdot b \cdot c$ 為常數。若 f(x)在 x=1 處有極小值 3 ,在 x=-2 處有極大值,試求 $a \cdot b \cdot c$ 之值。

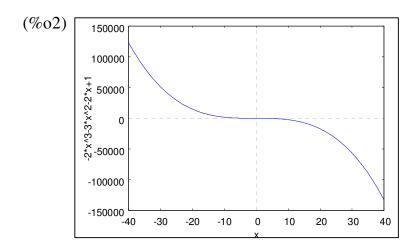
- 4. 經市場調查,某商品每件成本 48 元,其售價為 120 元,每月平均可銷售出 700 件; 若每件每次降價 3 元,則每月就可多銷售 35 件,試求:
- (1) 售價定為多少元時,每月總收入為最多?
- (2) 售價定為多少元時,每月的利潤為最多?
- 5. 已知一矩形土地的周長為60公尺,欲使其長與寬的比值不大於4且不小於2,則 此矩形土地面積最大值為多少?

Part B

- 1. 已知曲線 $y=x^3+ax^2+4x+b$,以P(2,-3)為切點的切線斜率為最小,試求 $a \cdot b$ 之值?
- 2. 已知 P(x,y) 為橢圓 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 上的一個動點,試求 $6x^2 + 3xy^2 + 4x$ 的最大值與最小值

2-3 三次函數的圖形

P88


隨堂練習:

- (1) 試描繪函數 $f(x) = -4x^3 + 6x^2 3x + 1$ 的圖形
- (%i1) plot2d($[-4*x^3+6*x^2-3*x+1]$,[x,-40,40]);

(2) 試描繪函數 $g(x) = -2x^3 - 3x^2 - 2x + 1$ 的圖形

(%i2) plot2d($[-2*x^3-3*x^2-2*x+1]$,[x,-40,40]);

※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」; 指令表示繪出方程式 之圖形,其中 X 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。

P89

隨堂練習:仿照上述的方式,整理出三次函數 $f(x) = ax^3 + bx^2 + cx + d$ (a < 0) 圖形的可能 情形。

P.90

例題 1:已知正數 α 為三次方程式 $x^3 - x^2 - 8x + k = 0$ (其中 k 為定數)的二重根,試求 α 、 k及另一根。

 $(\%i1) f(x) := x^3 - x^2 - 8 x + k;$

 $(\%01) f(x) := x^3 - x^2 + (-8)x + k$

(%i2) diff(f(x),x,1);

 $(\%02) 3x^2 - 2x - 8$

(%i3) factor $(3*x^2-2*x-8)$;

(%03)(x-2)*(3*x+4)

 α 為 f(x)=0 之二重根,又 α 為正數,故取 $\alpha=2$,代回 f(x)

(%i4) solve([f(2)=0],[k]);

(%o4) [k=12]

可知 k 為 12

(%i5) k:12;

(%05)12

 $(\%i6) x^3-x^2-8*x+k;$

$$(\%06) x^3-x^2-8x+12$$

(%i7) factor($x^3-x^2-8*x+12$);

 $(\%07) (x-2)^2 (x+3)$

*故可知 f(x)=0 的另一根為-3

- ※「diff(多項式函數,函數,n次導數)」指令表示對一多項式函數之中特定函數進行n階導數。
- ※「factor(數值)」指令表示求因式分解。
- ※「solve([變數算式],[變數])」指令表示求解。

P91

隨堂練習:設為實係數三次多項式,試利用微分的乘法公式證明下列的重根定理: 有重根 α ,即 $(x-\alpha)^2 | f(x) \Leftrightarrow f(\alpha) = 0$ 且 $f'(\alpha) = 0$ 。

P.92

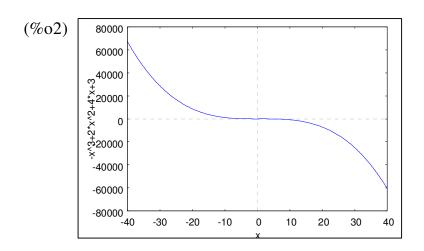
例題 2:設 $f(x)=x^3-3x^2-9x+k$,試求滿足下列各條件之 k 值:

- (1) f(x)=0 有三相異實根。
- (2) f(x)=0 有一實根與二虛根。
- (3) f(x)=0 有二正根與一負根。

P.93

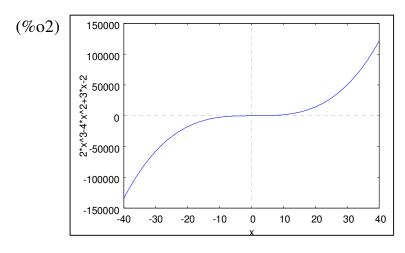
隨堂練習:設 $f(x) = -2x^3 + 3x^2 + 12x + k$,試求滿足下列各條件之 k 值:

- (1) f(x) = 0 有三相異實根。
- (2) f(x)=0 有一實根與二虛根。
- (3) f(x)=0 有二負根與一正根。


P.93 習題 2-3

Part A

- 1. 試描繪下列各函數的大略圖形
- (1) $f(x) = x^3 + 3x^2$
- (%i2) plot2d([x^3+3*x^2],[x,-40,40]);


(2)
$$g(x) = -x^3 + 2x^2 + 4x + 3$$

(%i2) plot2d($[-x^3+2*x^2+4*x+3]$,[x,-40,40]);

(3)
$$h(x) = 2x^3 - 4x^2 + 3x - 2$$

 $(\%i2)\ plot2d([2*x^3-4*x^2+3*x-2],[x,-40,40]);$

- ※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」;指令表示繪出方程式 之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。
- 2. 函數 $f(x) = ax^3 + bx^2 + cx + d$ 的大略圖形, 試判別 $a \cdot b \cdot c \cdot d$ 之正負值

- 3. 若方程式 $x^3-3x^2-45x+a=0$ 有二正根與一負根,試求 a 值的範圍
- 4. 設函數 $f(x) = x^3 3kx^2 + k$, 求分別滿足下列條件之 k 值:
- (1) f(x) = 0 有三相異實根。
- (2) f(x) = 0 有二負根與一正根。
- 5. 設 f(x)是一個首項係數為 1 的實係數三次多項式, k 是一個常數, 已知當 k<0 或 k>4 時, f(x)-k=0 只有一個實根; 當 0<k<4 時, f(x)-k=0 有三個相異實根, 請選出 正確選項:(多選)
- (1) f(x)-4=0和 f'(x) 有共同實根
- (2) f(x) = 0和 f'(x) 有共同實根
- (3) f(x)+3=0 的任一實根大於 f(x)-6=0 的任一實根
- (4) f(x)+5=0 的任一實根小於 f(x)-2=0 的任一實根

Part B

- 1. 試證:三次方程式 $x^3 + ax + b = 0$ 有三個不等實根的充要條件為 $4a^3 + 27b^2 < 0$ 。
- 2. 設函數 $f(x) = ax^3 + bx^2 + cx + d$ 在 x=1 處有極大值 7,而(-1,-9) 是其圖形的一個反曲點,試求函數 f(x) 。
- 3. 若過原點 O(0,0)恰有兩條直線與 $f(x) = x^3 + kx^2 + 1$ 的圖形相切,則 k 值為何?

2-4 極值的應用

P.95

例題1: 甲船從碼頭東方駛離時,乙船恰在碼頭北方7公里處,正駛向碼頭。今已知 甲、乙兩船的航速分別為每小時60公里與30公里,試問經過多少分鐘後, 兩船相距最近?又最近距離是多少?

P96

隨堂練習:求函數 $f(x) = \sqrt{(x-1)^2 + (x+3)^2 + (x-8)^2}$ 的最小值。

P97

例題 2: 用一塊寬 3 公尺、長 8 公尺的白鐵板,先再四個角各截去相同大小的正方形, 然後摺起四邊焊接起來,形成一個無蓋的長方體蓄水箱,試問在各角截去的 正方形邊長應為多少,才能使水箱的容積(鐵板厚度不計)為最大?又其最大 容積為多少?

P98

隨堂練習:假設有一邊長為24公分正方形硬紙,若要從四個角各截去相同大小的正方形,以便摺成一個紙盒,試問應如何截法,才能使紙盒的容積最大? 又其容積最大為何?

例題3:已知球體之半徑為R,求其內接直圓錐的最大體積。(直圓錐的體積等於 $\frac{1}{3}$ ×底圓面積×高)

P99

隨堂練習:承接例題3,當球之內接直圓錐的體積最大時,求球半徑與直圓錐之底圓 半徑之比例。

P100

例題 4:設 P(0,1)及曲線 $\Gamma: y=x^2-x$,試在 Γ 上找一點 Q 使 \overline{PQ} 為最小。

P101

隨堂練習:設P(-3,0)及拋物線 $\Gamma: y=x^2$,試在 Γ 上找一點Q使 \overline{PQ} 為最小。

例題 4:學校要製作一面等腰梯形的大型廣告看板,上底長為 14 公尺,兩腰長各為 4 公尺,若欲使其面積為最大時,其高度應為多少公尺?

P.103 習題 2-4

Part A

- 1. 求函數 $f(x) = (x-1)^2 + (x-2)^2 + (x-3)^2 + (x+7)^2 + (x+8)^2 + (x+9)^2$ 的最小值。
- 2. 某大飯店有 150 間客房,每間房客住宿費若定為 2000 元時,則全數客滿;若住宿費每提高 100 元,就會多出兩間空房,假如每間客房的服務成本為 500 元,試問每間客房的住宿費定為多少元時,才能有最大的利潤?
- 3. 設 P(7,0) 及雙區線 $\Gamma: \frac{x^2}{4} \frac{y^2}{3} = 1$,試在 Γ 上找一點 Q 使 \overline{PQ} 為最小。
- 4. 假設某地區蚊子的數量與降雨量 x 的關係為函數 $f(x) = -x^3 + 15x^2 48x + 65$,其中 $0 \le x \le 10$,試求造成蚊子最少時的降雨量與造成蚊子最多時的降雨量?(降雨量以公厘(mm)為單位,蚊子數量以千隻為單位)。
- 5. 已知一球體之半徑為 R, 試求其內接直圓柱的最大體積, 並求當內接直圓柱有最

大體積時的高。

6. 設 m 為實數 ,已知四次方程式 $3x^4 - 4mx^3 + 1 = 0$ 無實數根 ,求 m 的範圍 。

Part B

- 1. 半徑為 1 的圓,切掉一個圓心角為 θ 的扇形後,將剩下的部分圍成一直圓錐,試 求當 θ 為多少時,直圓錐有最大的體積,並求此最大體積。
- 2. 設一直圓錐高為 h,底半徑為 r,有一直圓柱內接於此直圓錐,令直圓柱之底半徑 為X,若直圓柱之體積為f(x),試求:
- (1) 函數 *f*(*x*)
- (2) 直圓柱之最大體積

59

第二章 綜合練習

P.105

Part A

- 1. 右圖為 $f(x) = ax^3 + bx^2 + cx + d$ 的大略圖形,試問下列選項何者正確?(複選)
- (1) a>0 (2) b>0 (3) c>0 (4) d>0 (5) $b^2-3ac>0$
- 2. 某市公車票價為15元,每月乘客平均為30萬人次,為因應油價上漲,擬調整票價,經市場調查,若將票價調漲x%時,每月乘客將減少現有人次的0.5x%,試問票價調整為多少元時,可使公車處每月營收最高?
- 3. 為了刺激消費意願,某知名飯店推出自助餐每客 199 元可吃到飽的活動,一推出 800 個座位供不應求,根據問卷調查顯示,若餐費每客提高 10 元,則會流失 10 個顧客,試問餐廳欲達最高營收,每客自助餐應定為多少元?(以元為單位)
- 4. 若函數 $f(x) = x^4 + 4kx^3 + 2x^2 + 1$ 在 x<0 時為遞減,在 x>0 時為遞增,試求實數常數 k

的範圍。

- 5. 設 $f(x) = x^4 + x^3 2x^2 3x$, 當 $0 \le x \le 2$ 時,試求:
- (1) f(x)的極大值與極小值
- (2) f(x)的最大值與最小值
- 6. 設 $x \ge 0$ 、 $y \ge 0$ 且 2x+y=1,則 $2x^3+y^3$ 的最大值與最小值分別為何?
- 7. 設 P(7,1)且 Q 為曲線 Γ : $y=x^2+x-4$ 上的一動點,試求 Q 點使 \overline{PQ} 為最小,此時 \overline{PQ} 長度為多少?

P.106

- 8. 描繪 $f(x) = x^4 4x^3 + 4x^2 1$ 函數的大略圖形
- (%i1) plot2d($[x^4-4*x^3+4*x^2-1]$,[x,-3,5],[y,-5,15]);

※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。

- 9. 設函數 $f(x) = x^4 + x^3 2x^2 3x$, 滿足下列條件之 k 值:
- (1) f(x)沒有極限
- (2) f(x) = 0 沒有虛根

Part B

- 試利用導數的方法,證明下列伯努利不等式:設 n 為正整數且 x>-1,則(1+x)ⁿ≥
 1+nx
- 2. 設三次函數 f(x)的圖形在 x=1 處的切線方程式為 y=4x-3,且在 x=-1 處有極小值 7, 試求函數 f(x)。
- 3. 小明為般極競賽設計看板,在一根長 3 公尺的竹竿頂端 \mathbb{C} 、平地上一點 \mathbb{P} 及高牆上一點 \mathbb{Q} ,架設一個直角三角型看板, $\overline{AC}=3$ 、 $\overline{AB}\perp\overline{AC}$ 、 \overline{AB} 垂直直線 \mathbb{L} ,且 $\angle CPQ=90^\circ$,若竹竿與高牆相距 14 公尺(即 $\overline{AB}=14$),試求可架設的直角三角形看板之最大面積為何?(選取適當的點 \mathbb{P} \mathbb{Q} \mathbb{Q} 使 \mathbb{CPQ} 之面積最大),[提示:利用 $\sin(\angle APC)=\sin(\angle PQB)$,求出 \overline{PQ}]

第三章 多項式函數的積分

3-1 黎曼和與面積

P.114

例題 1:若 f(x)=3x-2的圖形與直線 x=1、x=3 及 x 軸所圍成的圖形區域為 R,將[1,3]平分成 n 等分,求 f(x)在[1,3]上的上黎曼和與下黎曼和,並求區域 R 的面積。

P.115

隨堂練習:在x 軸上,將[0,2]平分成 n 等分,利用分割逼近的方法求 f(x)=2x+3 的 圖形與直線 x=0,x=2 及x 軸所圍成的圖形面積。

P.118

例題 2:利用"分割求近似和"與"逼近求極限值"的方法,求函數 $f(x)=x^3$ 的圖形與直線 x=0、x=2 及 x 軸所圍成區域的面積。

例題 3:已知圓 $x^2 + y^2 = a^2$,其面積為 πa^2 ,試利用"黎曼和"求橢圓 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 的面積(其

63

$$+$$
 a>0 ⋅ b>0) ∘

P.119

隨堂練習:求出橢圓 $\frac{x^2}{Q} + \frac{y^2}{4} = 1$ 的面積。

P.122

例題 4: 設 $f(x) = x^2 - 4$ 多項式函數, $0 \le x \le 3$

- (1) 將[0,3]平分成 6 等分,分割: $0=x_0 < x_1 < \dots < x_6 = 3$,在每一小段[x_{i-1}, x_i]中取 $t_i=x_i$, 試求 f(x)在[0,3]對於分割的黎曼和。
- (2) 將[0,3]平分成 n 等分,分割: $0=x_0 < x_1 < \cdots < x_6 = 3$,在每一小段[x_{i-1} , x_i]中取 $t_i=x_i$, 試求 f(x)在[0,3]對於分割的黎曼和(R_n)。

64

(3) 試求 $\lim_{n\to\infty} R_n$ 之值,並說明其意義。

P.123 習題 3-1

Part A

- 1. 對於 $f(x)=x^2$ 的圖形與直線 x=2,x=4 及 x 軸所圍成的區域。
- (1) 將區間[2,4]分成4等分,試求其上黎曼與下黎曼和。
- (2) 將區間[2,4]分成 4 等分,分割: $2=x_0 < x_1 < x_2 < x_3 < x_4 = 4$,取 $t_i = \frac{x_{i-1} + x_i}{2}$, $i=1 \cdot 2 \cdot 3 \cdot 4$,試求黎曼和 $\sum_{i=1}^{n} f(x_i) \cdot \Delta x$ 的值。
- (3) 將區間[2,4]分成 n 等分,分割: $2=x_0 < x_1 < x_2 < x_3 < x_4 = 4$,取 $t_i=x_i$,i=1、2、…、 n,試求黎曼和 $\sum_{i=1}^n f(x_i) \cdot \Delta x$
- (4) 求區域的面積
- 利用"分割求近似和"與"逼近求極限值"的方法,求函數 f(x)=2x²的圖形與直線
 x=1、x=2及x 軸所圍成區域的面積。
- 3. 設 f(x)為[a,b]上的多項函數,平分[a,b]成 n 等分,分割: $a=x_0 < x_1 < x_2 < \cdots < x_n = b$,取 $t_i=x_i$ ($i=1 \cdot 2 \cdot \cdots \cdot n$),設 $R_n(f)$ 代表在[a,b]上的黎曼 和;y=f(x)的圖形與直線 $x=a \cdot x=b$ 及 x 軸所圍成的區域被 x 軸分成三個部分,設

三個區域分別為 R_1 、 R_2 、 R_3 ,令區域 R_1 、 R_2 、 R_3 的面積分別為 m、n、k,試用 m、n、k 來表示 $\lim_{n\to\infty} R_n(f)$ 的值。

P.124

Part B

- 1. 設多項式函數 $f(x) = x^2 9$, $0 \le x \le 4$
- (1) 將[0,4]平分成 8 等分,分割: $0=x_0 < x_1 < \cdots < x_8 = 4$,在每一小段[x_{i-1} , x_i]中取 $t_{i}=x_i$,i=1、2、 \cdots 、n,試求 f(x)在[0,4]對於分割的黎曼和。
- (2) 將[0,4]平分成 n 等分,分割: $0=x_0 < x_1 < \cdots < x_8 = 4$,在每一小段[x_{i-1} , x_i]中取 $t_i=x_i$, $i=1 \cdot 2 \cdot \cdots \cdot n$,試求 f(x)在[0,4]對於分割的黎曼和 $\sum_{i=1}^n f(x_{i-1}) \cdot \frac{4}{n}$ 。
- (3) 求 $\lim_{n\to\infty}\sum_{i=1}^n f(x_{i-1})\cdot\frac{4}{n}$, 並解釋這個極限值的意義。
- 2. 已知在圓 $x^2 + y^2 = 25$ 內含一橢圓 $\frac{x^2}{25} + \frac{y^2}{9} = 1$,設圓內部在兩直線 x = 1 及 x = 2 之間面積為 R_1 ,而橢圓內部在此兩直線之間的面積為 R_2 ,則 $\frac{R_1}{R_2}$ 的值為何?

3-2 定積分

P.127

例題1:

- 1. 利用定積分的符號來表示圖中上半圓區域的面積。
- 2. 用定積分與面積的關係求 $\int_0^2 (3x-2)dx$ 的值。

(%i1) integrate(3*x-2,x,0,2);

(%01)2

※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。

P.128

隨堂練習:

1. 已知半徑等於 Γ 的圓面積為 πr^2 ,試利用這個結果計算 $\int_0^1 \sqrt{1-x^2} dx$ 的值。

(%i1) integrate(sqrt(1-x^2),x,0,1);

(%o1) $\frac{\pi}{4}$

2. 用定積分與面積的關係求 $\int_0^3 (2x-4)dx$ 的值。

(%i1) integrate(2*x-4,x,0,3);

(%01) -3

※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。

例題 2:

- 1. 設 $f(x)=x^2-2x$ 是定義域在區間[0,3]上的多項函數,將[0,3]平分成 6 等分,即: $0=x_0< x_1< \cdots < x_6=3$,取 $t_i=x_i$ 為[x_{i-1} , x_i]的右端點 x_i ,試求黎曼和 $\sum_{i=1}^6 f(t_i)\cdot \Delta x$ 的值。
- 2. 試求 $\int_{0}^{3} (x^{2} 2x) dx$ 的值。

P.130

隨堂練習:

- 1. 例題 2 中,若 t_i 取左端點 x_{i-1} ,i=1、2、…、n,計算黎曼和 $\sum_{i=1}^{n} f(t_i) \cdot \Delta x$
- 2. 試求 $\lim_{n\to\infty}\sum_{i=1}^n f(t_i)$ 的值並與例題 2 的結果比較。

例題 3: 試求 $\int_0^b x^2 dx$ 的值,其中 b>0。

P.131

隨堂練習: 試求下列的值:

- 1. $\int_0^b 1 dx$, (b > 0) °
- 2. $\int_0^b x dx \cdot (b > 0) \circ$

P.134

例題 4: 利用定積分的性質,計算下列定積分的值:

1.
$$\int_0^5 (4+3x^2)dx$$

(%i1) integrate $(4+3*x^2,x,0,5)$;

(%o1) 145

2.
$$\int_{3}^{0} x^{2} dx$$

(%i1) integrate($x^2,x,3,0$);

(%01) -9

※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。

隨堂練習:設 f(x)與 g(x)為多項式 ,已知 $\int_0^5 f(x)dx = 15$ 且 $\int_0^5 g(x)dx = 4$,試求 $\int_0^5 [2f(x) - 3g(x)]dx$ 的值。

例題 5:設 f(x)為一個多項式函數,且在[0,7]中的值大於 0,已知定積分 $\int_0^7 f(x)dx = 15$, $\int_0^3 f(x)dx = 8$,試求 $\int_3^7 f(x)dx$ 的值。

P.135

隨堂練習:設f(x)為多項式,已知 $\int_1^5 f(x)dx = m$ 且 $\int_4^5 f(x)dx = n$,試求的值 $\int_1^4 f(x)dx$ 。

P.142

例題 6: 試求定積分 $\int_{1}^{3} (2x^3 + 4x^2 - x + 5) dx$ 的值。

(%i1) integrate(
$$2*x^3+4*x^2-x+5,x,1,3$$
);
(%o1) $\frac{242}{3}$

※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。

隨堂練習: 試求定積分的值。

(1)
$$\int_{-1}^{2} (x^3 - 2x + 5) dx$$

(%i1) integrate(x^3-2*x+5,x,-1,2);
(%o1)
$$\frac{63}{4}$$

(2)
$$\int_{3}^{2} (x^3 + 2x + 5) dx$$

(%i2) integrate(x^3-2*x+5,x,3,2);
(%o2)
$$-\frac{65}{4}$$

※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。

P.144

例題7: 試求多項式函數 $f(x) = x^3 - x^2 - 2x$ 的圖形與 X 軸所圍成的區域面積。

P.145

隨堂練習:試求多項式函數 f(x) = (x-1)(x-2)(x-3) 的圖形與 x 軸所圍成的區域面積。

例題 8: 利用 $\int_{-R}^{R} \sqrt{R^2 - x^2} dx = \frac{1}{2} \pi R^2$ 這個事實,求函數 $f(x) = 2 + \sqrt{1 - x^2}$ 的圖形與直線 x = -1, x = 1 與 x 軸所圍成的區域面積。

P.146

隨堂練習:利用 $\int_{-R}^{R} \sqrt{R^2 - x^2} dx = \frac{1}{2} \pi R^2$ 這個事實,求函數 $f(x) = 2\sqrt{9 - x^2}$ 的圖形與直線 x = -3, x = 3 與 x 軸所 圍成的區域面積。

P.146 習題 3-2

Part A

- 1. 設函數 $f(x) = 4 x^2$ 定義在區間[0,3]上,
- (1) 將區間[0,3]平均分成6等分,其分割為: $0=x_0 < x_1 < \cdots < x_6 = 3$,取 $t_i=x_i$ 為[x_{i-1},x_i] 的左端點,試求黎曼和 $\sum_{i=1}^6 f(t_i)\cdot \Delta x$,其中 $\Delta x=\frac{3}{6}$ 。
- (2) 將區間[0,3]平分成 n 等分,其分割為: $0=x_0 < x_1 < \dots < x_n = 3$,取 t_i 為[x_{i-1} , x_i]的 左端點,試求黎曼和 $\sum_{i=1}^{n} f(t_i) \cdot \Delta x$,其中 $\Delta x = \frac{3}{n}$ 。
- (3) 利用黎曼和求 $\int_0^3 (4-x^2)dx$
- 2. 設二次函數 $f(x) = x^2 + 2x 3$,將區間[0,2]平分成 n 等分,分割: $0 = x_0 < x_1 < \dots < x_n = 2$,
- (1) 試求黎曼和 $\sum_{i=1}^{n} f(t_i) \cdot \Delta x$,其中 $\Delta x = \frac{2}{n}$
- (2) 試求 $\lim_{n\to\infty}\sum_{i=1}^n f(t_i)\cdot \Delta x$
- (3) 試求 $\int_0^2 (x^2 + 2x 3) dx$

P.147

- 3. 設f(x)為一個多項式函數,已知定積分 $\int_a^b f(x)dx = m \setminus \int_a^b g(x)dx = n$,試利用 $m \setminus n$ 來表示下列定積分的值。
- (1) $\int_a^b 2f(x)dx$
- (2) $\int_{a}^{b} [3f(x) g(x)]dx$
- (3) $\int_a^b f(x)dx$
- 4. 已知多項式函數 f(x)定義在[a,b]上,c為[a,b]內任一點,下列各式何者成立?
- (1) $\int_a^a f(x)dx = 0$
- (2) $\int_a^b f(x)dx = \int_b^a f(x)dx$
- (3) $\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$
- (4) $\int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx \int_{a}^{b} f(x)dx$
- (5) $\int_a^b f(x)dx = 0$ 表示 f(x)的圖形與直線 $x=a \cdot x=b$ 及 x 軸所圍成的區域面積。
- 5. 球出下列多項式函數的不定積分:
- (1) $\int 5dx$
- $(2) \int (u+2)^3 du$
- (3) $\int (x^3 2x + 5) dx$
- (4) $\int (t-2t^3+2t^2+t-1)dt$
- 6. 利用反導函數求下列定積分:
- (1) $\int_{1}^{3} (x^2 3) dx$
- (%i1) integrate($x^2-3,x,1,3$);

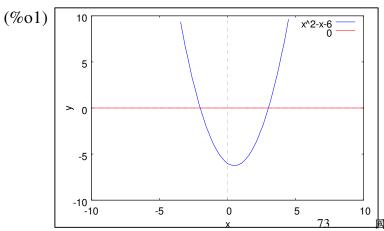
(%o1)
$$\frac{8}{3}$$

(2)
$$\int_{5}^{2} (4r^3 - r + 1)dr$$

$$(\%i2)$$
 integrate $(4*r^3-r+1,r,5,2)$;

$$(\%02) -\frac{1203}{2}$$

(3)
$$\int_{-1}^{2} (y-1)^3 dy$$


$$(\%03) -\frac{15}{4}$$

(4)
$$\int_{-1}^{-2} (5x^4 - 4x^3 + 6x^2 + 4x - 1) dx$$

$$(\%04) -53$$

- ※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。
- 7. 試求 $y=x^2-x-6$ 的圖形與X軸所圍成的區域面積

plot2d: some values were clipped.

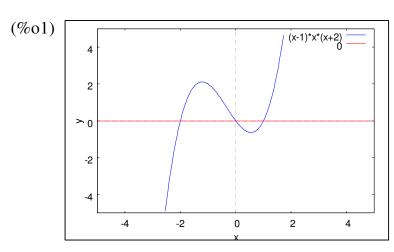
(%i2) solve([y= x^2-x-6,y=0],[x,y]);

(%02) [[x=-2,y=0],[x=3,y=0]]

求出兩拋物線交點為(-2,0)與(3,0),且 x 軸(y=0)在此區域之值大於 $y=x^2-x-6$ 。

(%i3) integrate $(0-(x^2-x-6),x,-2,3);$

$$(\%03) \frac{125}{6}$$


- ※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。
- ※「solve([變數算式],[變數])」指令表示求解。
- ※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。

P.148

8. 試 $x_y = x(x+2)(x-1)$ 與 X 軸所圍成的區域面積

(%i1) plot2d([x*(x+2)*(x-1),0],[x,-5,5],[y,-5,5]);

plot2d: some values were clipped.

(%i2) solve([y= x*(x+2)*(x-1),y=0],[x,y]);

$$(\%02)$$
 [[x=-2,y=0],[x=1,y=0],[x=0,y=0]]

求出兩線交點為(-2,0)、(1,0)與(0,0),可分為:x 為-2~0 區域(y=x(x+2)(x-1)之值大於 x 軸)、x 為 0~1 區域(x 軸之值大於 y=x(x+2)(x-1))。

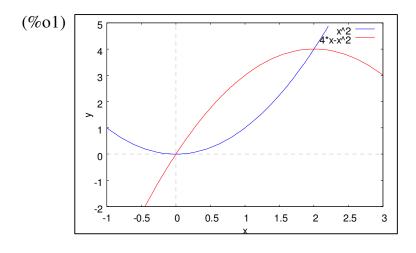
(%i3) integrate((x*(x+2)*(x-1))-0,x,-2,0)+ integrate(0-(x*(x+2)*(x-1)),x,0,1); (%o3)
$$\frac{37}{12}$$

- ※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。
- ※「solve([變數算式],[變數])」指令表示求解。
- ※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。
- 9. 試求 $y = x^3 + 4x^2 + x 6$ 的圖形與直線 $x = 0 \cdot x = 4$ 及 x = 1 軸所圍成的區域面積。

Part B

- 1. 利用定積分求無窮級數的和:
- (1) 設 $f(x) = (1+x)^3$, 試用f(x)在[0,2]上的黎曼和來表示
- (2) 利用定積分求無窮級數 $\lim_{n\to\infty} \sum_{i=1}^{n} \frac{2}{n} (1 + \frac{2i}{n})^3$ 的和。
- 2. 如右圖所示,設連續函數 y=g(x)的圖形包含兩條直線與一個半圓,試利用圖形的面積來計算下列定積分:
- $(1) \int_0^2 g(x) dx$
- (2) $\int_{2}^{6} g(x) dx$
- (3) $\int_0^8 g(x)dx$

- 3. 設 f(x)為一個多項式函數,且滿足 $\int_a^x f(t)dt = x^2 3x$
- (1) 求 f(x)
- (2) 求 a
- 4. 設與為兩個多項式函數,若,且,其中 a、b 為兩個常數,試求這兩個多項式函數, 及常數 a、b


3-3 定積分的應用

P.150

例題1: 試求拋物線 $y=x^2$ 與 $y=4x-x^2$ 所圍成的區域面積。

(%i1) plot2d([x^2,4*x-x^2],[x,-1,3],[y,-2,5]);

plot2d: some values were clipped.

(%i2) solve([y=x^2,y=4*x-x^2],[x,y]);

(%02)[[x=2,y=4],[x=0,y=0]]

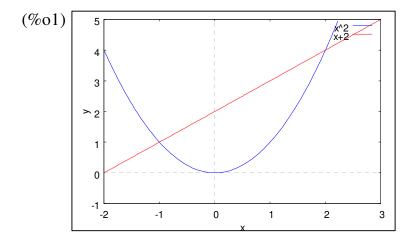
求出兩拋物線交點為(2,4)與(0,0),且 $y=x^2$ 在此區域之值大於 $y=4x-x^2$ 。

(%i3) integrate $((4*x-x^2)-x^2,x,0,2);$

 $(\%o3) \frac{8}{3}$

※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」;指令表示繪出方程式

之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。 ※「solve([變數算式],[變數])」指令表示求解。


※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。

P.151

隨堂練習:試求直線 y=x+2 與拋物線 $y=x^2$ 所圍成的區域面積。

(%i1) plot2d([x^2, x+2],[x,-2,3],[y,-1,5]);

plot2d: some values were clipped.

(%i2) solve([y=x+2,y=x^2],[x,y]);

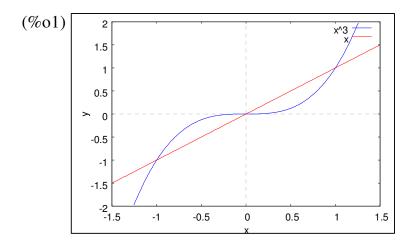
(%02) [[x=-1,y=1],[x=2,y=4]]

求出兩線交點為(-1,1)與(2,4),且在此區域y=x+2之值大於 $y=x^2$ 。

(%i3) integrate $((x+2)-x^2,x,-1,2)$;

 $(\%o3) \frac{9}{2}$

※「plot2d([方程式],[x,最小值,最大值],[y,最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。
※「solve([變數算式],[變數])」指令表示求解。


※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。

P.152

例題2:試求曲線 $y=x^3$ 與y=x所圍成的區域面積。

(%i1) plot2d([x^3, x],[x,-1,3],[y,-2,5]);

plot2d: some values were clipped.

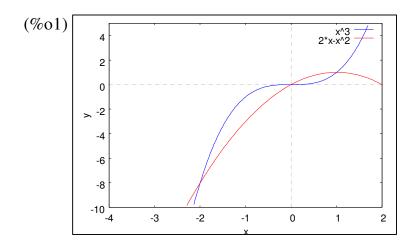
(%i2) solve([y=x,y=x^3],[x,y]);

(%o2)[[x=-1,y=-1],[x=1,y=1],[x=0,y=0]]

求出兩線交點為(-1,-1)、(1,1)與(0,0),可分為:x 為-1~0 區域 $(y=x^3$ 之值大於 y=x)、x 為 0~1 區域(y=x之值大於 $y=x^3)$ 。

(%i3) integrate(x^3-x,x,-1,0)+ integrate(x-x^3,x,0,1); (%o3) $\frac{1}{2}$

※「plot2d([方程式],[x,最小值,最大值],[y,最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。
※「solve([變數算式],[變數])」指令表示求解。



※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。

隨堂練習:試求 $y=x^3$ 與 $y=2x-x^2$ 所圍成的區域面積。

(%i1) plot2d([x^3, 2*x-x^2],[x,-4,2],[y,-10,5]);

plot2d: some values were clipped.

(%i2) solve([y=x^3,y=2*x-x^2],[x,y]);

$$(\%02)$$
 [[x=-2,y=-8],[x=1,y=1],[x=0,y=0]]

求出雨線交點為(-2,-8)、(1,1)與(0,0),可分為:x 為-2~0 區域 $(y=x^3$ 之值大於 $y=2x-x^2)$ 、x 為 0~1 區域 $(y=2x-x^2)$ 之值大於 $y=x^3$)。

(%i3) integrate(x^3-(2*x-x^2),x,-2,0)+ integrate((2*x-x^2)-x^3,x,0,1); (%o3)
$$\frac{37}{12}$$

- ※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。
- ※「solve([變數算式],[變數])」指令表示求解。
- ※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。

P.154

例題3:證明:底面為邊長 a 的正方形,高為 h 的四角錐之體積為 $\frac{1}{3}a^2h$ 。

P.155

例題 4: 證明: 半徑為 r 的球體體積為 $\frac{4\pi r^3}{3}$

P.156

例題5:有一個直圓錐 S 的底半徑為 r ,高為 h ;證明:圓錐體 S 的體積為 $\frac{\pi r^2 h}{3}$,即直圓錐體 S 的體積等於 $\frac{1}{3}$ ×底面積×高。

P.157

例題 6: 試求 $y=x^2$ 的圖形與直線 $x=1 \cdot x=2$ 及 x 軸圍成的區域繞 x 軸旋轉所成的旋轉 體體積。

若 f(x)為定義在[a,b]上的連續函數,且 $f(x) \ge 0$,y=f(x)的圖形與直線 $x=a \cdot y=b$ 及 $x=a \cdot y=b$ 和 $x=a \cdot y=b$ 及 $x=a \cdot y=b$ 及 $x=a \cdot y=b$ 和 $x=a \cdot y=b$ 和 x=a

(%i1) integrate $(\%pi*(x^2)^2,x,1,2)$;

$$(\%01) \frac{31\pi}{5}$$

※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。

P.158

隨堂練習:試求 $y=x^2$ 的圖形與直線 x=1 、 x=4 及 y 軸圍成的區域繞 y 軸旋轉所成的旋轉體體積。

P.156

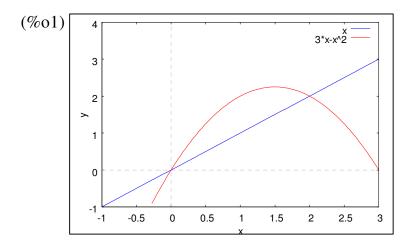
例題 7: 若一物體只受重力影響做自由落體運動,重力加速度為 $g(\Delta R/ v^2)$,初速度為 $V_0(\Delta R/ v)$,設 t 秒後的速度為 $V(t)(\Delta R/ v)$,位移大小為 $S(t)(\Delta R)$, 試推導自由落體的距離公式: $S(t) = V_0 t + \frac{1}{2} g t^2$

隨堂練習:設某一個質點 m 作直線運動, x 秒時的速度為 V(x) (公尺/秒), 其中 $V(x) = x^2 - x + 3$, 試求從 x = 2 秒至 x = 4 秒質點 m 的位移。

P.160

例題 8:假設某一個彈簧由自然長度拉長 20 公分需要 0.6 牛頓的力,現在將此彈簧 從比自然長度長 30 公分拉長到比自然長度長 50 公分,試問:共作了多少焦 耳的功。(1 焦耳=1 牛頓·1 公尺)

隨堂練習:設一個質點只受到水平力而在x 軸上從x=2 移動到x=5,若質點在x=a 處受力大小為 $f(a)=a^2+2$,試求此質點在移動過程受力所作的功。


P.161 習題 3-3

Part A

- 1. 求出下列區域的面積:
- (1) $y=x 與 y=3x-x^2$

(%i1) plot2d([x, 3*x-x^2],[x,-1,3],[y,-1,4]);

plot2d: some values were clipped.

(%i2) solve([y= x,y=3*x-x^2],[x,y]);

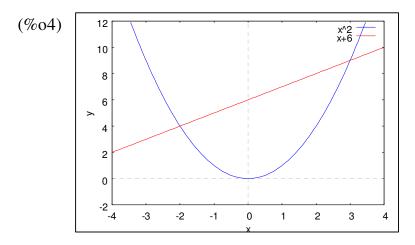
(%02) [[x=2,y=2],[x=0,y=0]]

求出兩線交點為(2,2)與(0,0), x 為 0~2 區域 $(y=3x-x^2$ 之值大於 y=x)

(%i3) integrate $(3*x-x^2-x,x,0,2)$;

 $(\%o3) \frac{4}{3}$

- ※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。
- ※「solve([變數算式],[變數])」指令表示求解。
- ※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式



函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。

(2)
$$y=x^2$$
 與 $y=x+6$

(%i4) plot2d([x^2, x+6],[x,-4,4],[y,-2,12]);

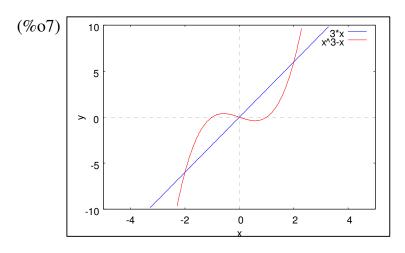
plot2d: some values were clipped.

(%i5) solve([y=x^2,y=x+6],[x,y]);

(%05) [[x=-2,y=4],[x=3,y=9]]

求出兩線交點為(-2,4)與(3,9), x 為-2~3 區域(y=x+6之值大於 $y=x^2)$

(%i6) integrate(x+6-x^2,x,-2,3);


$$(\%06) \frac{125}{6}$$

- ※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。
- ※「solve([變數算式],[變數])」指令表示求解。
- ※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。

(3) y=3x 與 $y=x^3-x$

(%i7) plot2d($[3*x, x^3-x],[x,-5,5],[y,-10,10]$);

plot2d: some values were clipped.

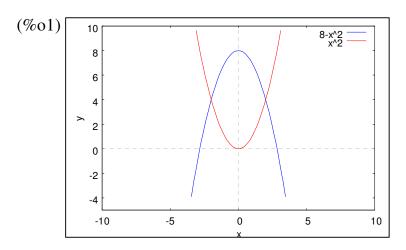
(%i8) solve([y=3*x,y=x^3-x],[x,y]);

$$(\%08)$$
 [[x=2,y=6],[x=-2,y=-6],[x=0,y=0]]

求出兩線交點為(2,6)、(-2,-6)與(0,0),可分為:x 為-2~0 區域 $(y=x^3-x)$ 之值大於 y=3x)、x 為 0~2 區域(y=3x之值大於 $y=x^3-x$)。

(%i9) integrate($x^3-x-3*x,x,-2,0$)+ integrate($3*x-(x^3-x),x,0,2$);

(%09)8


- ※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」; 指令表示繪出方程式 之圖形,其中 X 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。
- ※「solve([變數算式],[變數])」指令表示求解。
- ※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。
- 2. 試求以下各小題中曲線或直線所圍成的區域之面積:

(1)
$$y=8-x^2 \cdot y=x^2$$

$$(\%i1)$$
 plot2d([8-x^2, x^2],[x,-10,10],[y,-5,10]);

plot2d: some values were clipped.

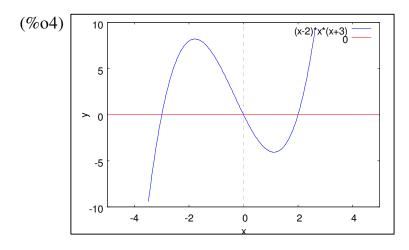
(%i2) solve([y=8-x^2,y=x^2],[x,y]);

$$(\%02)$$
 [[x=2,y=4],[x=-2,y=4]]

求出兩線交點為(2,4)與(-2,4), x 為-2~2 區域 $(y=8-x^2$ 之值大於 $y=x^2)$

(%i3) integrate $((8-x^2)-x^2,x,0-2,2)$;

$$(\%03) \frac{64}{3}$$


- ※「plot2d([方程式],[x,最小值,最大值],[y,最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。
 ※「solve([變數算式],[變數])」指令表示求解。
- ※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。

$$(2) y=x(x+3)(x-2) \cdot x 軸$$

(%i4) plot2d([x*(x+3)*(x-2), 0],[x,-5,5],[y,-10,10]);

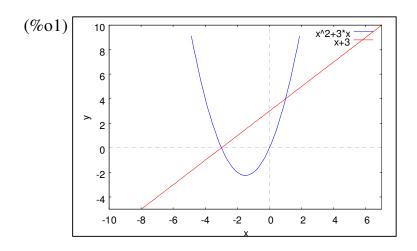
plot2d: some values were clipped.

(%i5) solve([y= x*(x+3)*(x-2),y=0],[x,y]);

$$(\%05)$$
 [[x=2,y=0],[x=-3,y=0],[x=0,y=0]]

求出兩線交點為(2,0)、(-3,0)與(0,0),可分為:x 為-3~0 區域(y=x(x+3)(x-2)之值大於 y=0)、x 為 0~2 區域(y=0) 之值大於 y=x(x+3)(x-2)0。

(%i6) integrate(x*(x+3)*(x-2)-0,x,-3,0)+ integrate(0- (x*(x+3)*(x-2)),x,0,2); (%o6) $\frac{253}{12}$


- ※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。
- ※「solve([變數算式],[變數])」指令表示求解。
- ※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。

(3)
$$y=x^2+3x \cdot y=x+3$$

(%i1) plot2d($[x^2+3*x, x+3],[x,-10,7],[y,-5,10]$);

plot2d: some values were clipped.

(%i2) solve([y= x^2+3*x,y= x+3],[x,y]);

(%02) [[x=1,y=4],[x=-3,y=0]]

求出兩線交點為(1,4)與(-3,0), x 為-3~1 區域(y=x+3) 之值大於 $y=x^2+3x$

(%i3) integrate $((x+3)-(x^2+3*x),x,-3,1);$

 $(\%03) \frac{32}{3}$

- ※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」; 指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。
 ※「solve([變數算式],[變數])」指令表示求解。
- ※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。
- 3. 如右圖所示,有一個底半徑為3公分的圓柱體,被一個通過直徑 \overline{AB} 且與底面成45 °角平面所截,試求所截出的立體體積。
- 4. 設 $y=x^3$ 的圖形與 x 軸、直線 x=1 、x=2 所圍成的區域為 R ,試求 R 繞 x 軸旋轉所得的旋轉體體積。
- 5. 試求 y^2 =4-x 與 x=0 所圍成的區域,繞 y 軸旋轉所產生的立體體積。

P.162

6. 假設有一自然長度為 10 公寸的彈簧,用 12 牛頓的力,可將彈簧拉長為 14 公寸, 將此彈簧從自然長度拉長5公寸,則需作功多少?又再拉長5公寸,需作功多少 焦耳?

Part B

- 1. 試求橢圓 $\frac{x^2}{0} + \frac{y^2}{4} = 1$ 所圍區域繞 x 軸旋轉所得的旋轉體的體積。
- 2. 試求二曲線 $y^2 = 8x$ 與 y = 2x 所圍成之區域繞 x 軸旋轉一周所得立體之體積。
- 3. 設 0 < r < b, 試求圓 $x^2 + (v b)^2 = r^2$ 繞 X 軸旋轉一周所得的旋轉體體積。[提示: $\int_{-r}^{r} \sqrt{r^2 - x^2} dx$ 等於半徑為 \mathbf{r} 的半圓面積等於 $\frac{\pi r^2}{2}$]
- 4. 假設船錨在船下 10 公尺,將錨視為一個質點,錨重 500 公斤,錨鏈是均匀的且每 公尺重2公尺,若水壓與 浮力不計,問起錨需作多少功?

88

第三章 綜合練習

P.163

Part A

1. 試求下列定積分:

(1)
$$\int_{2}^{4} (2u+3)(u-4)du$$

$$(\%i1)$$
 integrate $((2*u+3)*(u-4),u,2,4);$

$$(\%01) -\frac{50}{3}$$

(2)
$$\int_{-1}^{2} (x^3 - x^2 + 3) dx$$

$$(\%i2)$$
 integrate($x^3-x^2+3,x,-1,2$);

$$(\%o2) \frac{39}{4}$$

(3)
$$\int_0^3 |x^2 - 4| dx$$

$$(\%i3)$$
 abs(integrate($x^2-4,x,0,2$))+integrate($x^2-4,x,2,3$);

$$(\%o3) \frac{23}{3}$$

$$(4) \quad \int_{-3}^{3} \sqrt{9 - x^2} \, dx$$

(%o4)
$$\frac{9\pi}{2}$$

- ※「abs(數值)」指令表示絕對值。
- ※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。
- 2. 試求拋物線 $y = x^2$ 與直線 $y = \frac{4x}{3}$ 的圖形所圍成的區域面積。

$$(\%i1)$$
 plot2d([x^2, 4*x/3],[x,-6,6],[y,-2,4]);

plot2d: some values were clipped.

$$(\%i2)$$
 solve([y= x^2,y= 4*x/3],[x,y]);

$$(\%02) [[x=\frac{4}{3},y=\frac{16}{9}],[x=0,y=0]]$$

求出兩線交點為(
$$\frac{4}{3}$$
, $\frac{16}{9}$)與(0,0), x 為 $0 \sim \frac{4}{3}$ 區域($y = \frac{4x}{3}$ 之值大於 $y = x^2$)

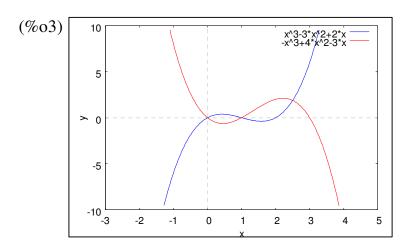
(%i3) integrate $((4*x/3)-(x^2),x,0,4/3)$;

$$(\%o3) \frac{32}{81}$$

- ※「plot2d([方程式],[x,最小值,最大值],[y,最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。
- ※「solve([變數算式],[變數])」指令表示求解。
- ※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。
- 3. 設 $y = x^2$ 與直線 $y = 0 \cdot x = 2$ 所圍成的區域為 R ,若直線 x = k 平分區域 R 的面積,試 求 k 的值。
- 4. 試求函數 $f(x) = x^3 3x^2 + 2x$ 與 $g(x) = -x^3 + 4x^2 3x$ 的圖形所圍成的區域面積。

$$(\%i1) f(x) := x^3 - 3 * x^2 + 2 * x;$$

$$(\%01)$$
 $f(x) := x^3 - 3x^2 + 2x$


$$(\%i2) g(x) := -x^3 + 4*x^2 - 3*x;$$

$$(\%02)$$
 $g(x) := -x^3 + 4x^2 + (-3)x$

(%i3) plot2d([f(x),g(x)],[x,-3,5],[y,-10,10]);

plot2d: some values were clipped.

(%i4) solve([y=f(x),y=g(x)],[x,y]);

$$(\%04)$$
 [[x=1,y=0],[x= $\frac{5}{2}$,y= $\frac{15}{8}$],[x=0,y=0]]

求出兩線交點為(0,0)、 $(\frac{5}{2},\frac{15}{8})$ 與(1,0),可分為:x 為 0~1 區域 $(f(x)=x^3-3x^2+2x)$ 之值大於 $g(x)=-x^3+4x^2-3x$)、x 為 1~ $\frac{5}{2}$ 區域 $(g(x)=-x^3+4x^2-3x)$ 位大於

$$f(x) = x^3 - 3x^2 + 2x$$
) •

(%i5) integrate(f(x)-g(x),x,0,1)+ integrate(g(x)-f(x),x,1,5/2);

$$(\%05) \frac{253}{96}$$

- ※「plot2d([方程式],[x,最小值,最大值],[y, 最小值,最大值])」;指令表示繪出方程式之圖形,其中 x 軸刻度介於最小值~最大值之間、y 軸刻度介於最小值~最大值之間。
- ※「solve([變數算式],[變數])」指令表示求解。
- ※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。
- 5. 解不等式 $\int_0^x (3t^2 + 2t 6)dt \le 0$

- 6. 設函數及其圖形上一點 P(-1,-1)
- (1) 試求以P點為切點,函數 f(x)的圖形之切線L的方程式。
- (2) 試求以 f(x)的圖形與直線 L 所圍成之區域面積。
- 7. f(x)表一實係數多項式,已知 $f(x) = 4x^3 + 3x^2 2x(\int_1^2 f(x)dx) + 3$
- (1) 求 $\int_{1}^{2} f(x)dx$ 的值
- (2) 求多項式 f(x)
- 8. 一個裝滿水的圓柱狀水桶,其底半徑為1公尺,高為2公尺,求把所有的水抽出 水桶作的功。
- (1) 試證明:Gini 係數= $2\int_{0}^{1} [x-f(x)] dx$
- (2) 設某一個國家羅倫茲(Lorenz)曲線為,試求此國家的 Gini 係數。

Part B

1. 如圖,試求曲線 $x = 4y - y^2$ 與 $y = \sqrt{3x}$ 所圍成的區域面積。[提示: $x = 4y - y^2$ 與 $y = \sqrt{3}x$ 可視 x 為 y 的函數。]

P.165

- 2. 設函數 $f(x) = x^3 kx^2 x + k$ (其中 $-1 \le k \le 1$)的圖形與 x 軸所圍成的封閉區域的面積 為 A(k)。
- (1) 試以 k 來表示 A(k)。
- (2) 求 A(k)的最大值與最小值。[提示: f(x) = (x+1)(x-1)(x-k)]
- 3. 右圖是半徑為 r 的球體中, 高為 h 的球帽, 試求此球帽的體積。
- 4. 如圖,試求中心角 $\theta=60^{\circ}$,半徑 Γ 之扇形 \mathbf{R} 繞 \mathbf{x} 軸旋轉所得旋轉體之體積。

5.

- (1) 找一個定義在[0,1]上的多項式函數 f(x),將[0,1]平分成 n 等分,選取適當的分割點,使得黎曼和 $\frac{1^p + 2^p + \dots + n^p}{n^{p+1}}$ 為,其中 p 為正整數。
- (2) 試利用定積分來證明: $\lim_{n \to \infty} \frac{1^p + 2^p + \dots + n^p}{n^{p+1}} = \frac{1}{p+1} , 其中 p 為正整數$ [提示: $\frac{1^p + 2^p + \dots + n^p}{n^{p+1}} = \frac{1}{n} \left[\left(\frac{1}{n} \right)^p + \left(\frac{2}{n} \right)^p + \dots + \left(\frac{n}{n} \right)^p \right]$
- 6. 如下圖,我們計算由直線 PQ 與的圖形所圍成的弓形之面積,阿基米德利用一連串的三角形來逼近弓形:設 P(a,a²)、Q(b,b²)、R(c,c²),其中 $c=\frac{a+b}{2}$
- (1) 請證明: $\triangle PQR$ 的面積= $\frac{1}{8}(b-a)^3$
- (2) 在 P (a, a²)與 R(c, c²),R(c, c²)與 Q (b, b²)的拋物線間分別取 $R_1(c_1, c_1^2)$ 、 $R_2(c_2, c_2^2),其中 c_1 = \frac{a+c}{2} 、 c_2 = \frac{c+b}{2} ; 請證明: \Delta PR_1R 面積 + \Delta PR_2Q 面積 = \frac{1}{4} \cdot \frac{(b-a)^3}{8}$
- (3) 重覆前面的動作,會形成無窮多個三角形,阿基米德利用這些三角形的面積和來

逼近弓形的面積,試求出這無窮多個三角行面積和,並藉此證明弓形面積為 $\frac{(b-a)^3}{6}$

(4) 試用定積分來計算弓形的面積。

附錄一、微積分的基本定理

P.168

例題 1:設 f(x) 與定義在[0,6]上連續函數,圖是函數的圖形,令 $g(x) = \int_0^x f(t)dt$,其中 $0 \le x \le 6$ 。

- (1) 試計算 g(2)、g(3)、g(4)
- (2) 試問 g(x)是遞增的函數嗎?

(3) 試問 g(x)表示成 x 的函數。

P.173

例題 2:利用微積分基本定理計算定積分 $\int_{1}^{3} (4x^{3}-2x^{2}+6x+1)dx$ 的值。

(%i1) integrate(($4*x^3-2*x^2+6*x+1$),x,-1,3); (%o1) $\frac{268}{3}$

※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。

隨堂練習:設 $g(x) = \int_{-2}^{x} (t^3 - 2 \cdot t + 5) dt$, 試求 g'(x)

(%i1) integrate($(t^3-2*t+5),t,-2,x$);

$$(\%01) \ \frac{x^4 - 4x^2 + 20x}{4} + 10$$

(%i2) ratsimp $(diff((x^4-4*x^2+20*x)/4+10,x,1));$

$$(\%02)$$
 $x^3 - 2x^2 + 5$

- ※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。
- ※「ratsimp([算式] × [算式])」指令表示化簡算式。

例題3:

- (1) 設函數 $g(x) = \frac{1}{x}$,請利用導函數的定義證明 $g'(x) = \frac{-1}{x^2}$ 。
- (2) 利用微積分基本定理計算定積分 $\int_1^2 \left(\frac{-1}{x^2}\right) dx$ 的值。

P.174

隨堂練習:設x>0,函數為連續函數。

- (1) 請利用導函數的定義證明 $g'(x) = \sqrt{x}$
- (2) 利用微積分基本定理計算定積分 $\int_1^2 \sqrt{x} dx$ 的值。

綜合練習

P.175

- 1. 設連續函數的圖形如圖所示,試求下列各定積分:
- $(1) \int_0^4 f(x) dx$
- $(2) \int_5^8 f(x) dx$
- $(3) \int_0^8 f(x) dx$

- 2. 請利用面積的觀點來計算下列定積分:
- (1) $\int_{-2}^{1} |x| dx$
- (%i1) abs(integrate(x,x,-2,0))+abs(integrate(x,x,0,1));

$$(\%01) \frac{5}{2}$$

(2)
$$\int_0^2 (1+\sqrt{4-x^2}) dx$$

[提示:
$$f(x)=1+\sqrt{4-x^2}$$
 的圖形為一個半圓]

(%i2) abs(integrate(1+sqrt(4-x 2),x,0,2));

$$(\%02) \pi + 2$$

- ※「abs(數值)」指令表示絕對值。
- 3. 利用微積分基本定理,求下列各小題中 g(x) 的導函數 g'(x)

(1)
$$g(x) = \int_{-1}^{x} (t+1)^{10} dt$$

(%i1) integrate($(t+1)^10,t,-1,x$);

$$(\%01) \quad \frac{(x^{11}+11x^{10}+55x^9+165x^8+330x^7+462x^6+462x^5+330x^4+165x^3+55x^2+11x+1)}{11}$$

(%i2) factor(diff((x^11+11*x^10+55*x^9+165*x^8+330*x^7+462*x^6+462*x^5+330*x^4+165*x^3+55*x^2+11*x+1)/11,x,1));

$$(\%02) (x+1)^{10}$$

- ※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。
- ※「factor(數值)」指令表示求因式分解。

(2)
$$g(x) = \int_{5}^{x} \frac{1}{t} dt$$

(%i1) integrate((1/t),t,5,x);

Is x-5 positive, negative, or zero?

positive;

 $(\%01) \log(x) - \log(5)$

(%i2) ratsimp(diff(log(x)-log(5),x,1));

$$(\%o2) \frac{1}{x}$$

- ※「integrate (多項式函數,函數,函數起始值,函數結束值)」指令表示對一多項式 函數之中特定函數進行積分,積分範圍為函數起始值至函數結束值。
- ※「ratsimp([算式] × [算式])」指令表示化簡算式。
- 4. 令 f(x) 表右圖單位圓內斜線的面積,0 < x < 1,則 f'(x) =
- (1) $\sqrt{1-x^2}$
- (2) $-\sqrt{1-x^2}$
- (3) $2\sqrt{1-x^2}$
- (4) $-2\sqrt{1-x^2}$
- (5) π
- 5. 右圖為連續函數 y = f(t) 的圖形, 設 $g(x) = \int_0^x f(t) dt$, 試求下列各小題:
- (1) g(x) 會在何處產生極值?
- (2) g(x) 會在那些範圍凹口向上?
- (3) 若 $g(1) = \frac{3}{2}$ 、 $g(2) = \frac{10}{3}$ 、 g(3) = 2 、 $g(4) = \frac{4}{5}$ 、 $g(5) = \frac{5}{3}$ 、 g(6) = 2 , 試描繪 y = g(x) 的略 圖。

附錄二、牛頓法求平方根的近似值

P.177

例題1:設給定方程式 (其中 k > 0)的根的一個近似值,若且,其中,則對方程式的根而言,是比更好的一個近似值。

P.179

例題2:求√7的近似值

附錄三、微分的乘法公式

附錄四、夾擠定理

P.182

例題 1:設 $a_n = \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \frac{1}{\sqrt{n^2+3}} + \dots + \frac{1}{\sqrt{n^2+n}}$,試用夾擠定理證明 $\langle a_n \rangle$ 收斂,並求其極限。

P.183

例題 2: 設 $f(x) = x \sin \frac{1}{x} (x \neq 0)$, 試求 $\lim_{x \to 0} f(x) = ?$