Example 1

Find an equation of the line that has a slope of 3 and passes through the point $(1,-2)$ ．

Sol：

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Point slope form } \\
y-(-2) & =3(x-1) & & \text { Substitute }-2 \text { for } y_{1}, 1 \text { for } x_{1}, \text { and } 3 \text { for } \mathrm{m} . \\
y+2 & =3 x-3 & & \text { Simplify. } \\
y & =3 x-5 & & \text { Solve for } \mathrm{y} .
\end{aligned}
$$

（\％i9）$f(\mathrm{~m}):=\mathrm{m}^{*}(\mathrm{x}-\mathrm{x} 1)+\mathrm{y} 1$ ；
（\％ 09 ）$f(m):=m(x-x 1)+y 1$
（\％i10）f（3）；
（8010）$y^{1}+3(x-x 1)$
（\％i11）f（x1，y1）：＝y1＋3＊（x－x1）；
（8011） $\mathrm{f}(\mathrm{x} 1, \mathrm{y} 1):=\mathrm{y} 1+3(\mathrm{x}-\mathrm{x} 1)$
（\％i12）f（1，－2）；
（8．12） $3(x-1)-2$

Example 2
a．The population of Kentucky was 3687000 in 1990 and 4042000 in 2000．Over this 10 －year period，the average rate of change of the population was
Rate of change $=\frac{\text { change in population }}{\text { change in years }}$

$$
\begin{aligned}
& =\frac{4042000-3687000}{2000-1990} \\
& =35500 \text { people per year } .
\end{aligned}
$$

If Kentucky＇s population continues to increase at this same rate for the next 10 years， it will have a 2010 population of 4937000 （see Figure P．16）．
b．In tournament water－ski jumping，the ramp rises to a height of 6 feet on a raft that is 21 feet long，as shown in Figure P．17．The slope of the ski ramp is the ratio of
its height（the rise）to the length of its base（the run）．

$$
\begin{aligned}
\text { Slope of ramp } & =\frac{\text { rise }}{\text { run }} \quad \text { Rise is vertical change, run is horizontal change. } \\
& =\frac{6 \text { feet }}{21 \text { feet }} \\
& =\frac{2}{7}
\end{aligned}
$$

In this case，note that the slope is a ratio and has units．

Example 3

Sketch the graph of each equation．
a．$y=2 x+1$
b．$y=2$
c． $3 y+x-6=0$

Sol：
a．Because $\mathrm{b}=1$ ，the y －intercept is $(0,1)$ ．Because the slope is $\mathrm{m}=2$ ，you know that the line rises two units for each unit it moves to the right，as shown in Figure P．18（a）．
b．Because $b=2$ ，the y－intercept is $(0,2)$ ．Because the slope is $m=0$ ，you know that the line is horizontal，as shown in Figure P．18（b）．
c．Begin by writing the equation in slope－intercept form．

$$
\begin{aligned}
3 y+x-6 & =0 & & \text { Write original equation. } \\
3 y & =-x+6 & & \text { Isolate } y \text {-term on the left. } \\
y & =-\frac{1}{3} x+2 & & \text { Slope-intercept form }
\end{aligned}
$$

In this form，you can see that the y－intercept is $(0,2)$ and the slope is $m=-\frac{1}{3}$ ．This means that the line falls one unit for every three units it moves to the right，as shown in Figure P．18（c）．

（\％i17） $\mathrm{F}(\mathrm{x}):=2 * x+1$ ；
plot2d（F，［x，－2，3］）；

```
(8017) F(x):=2 x+1
```

```
(8017) F(x):=2 x+1
```


Figure P．18（a）

Figure P．18（b）
（\％i48） $\mathrm{F}(\mathrm{x}):=2$ ；
$\operatorname{plot} 2 \mathrm{~d}(\mathrm{~F},[\mathrm{x},-1,3])$ ；

```
(8048) F(x):=2
```

(8049)

（\％i50） $\mathrm{F}(\mathrm{x}):=-1 / 3^{*} \mathrm{x}+2$ ；
plot2d（F，［x，－1，7］）；

$$
\text { (8050) } F(x):=\frac{-1}{3} x+2
$$

（8051）

Example 4

Find the general forms of the equations of the lines that pass through the point $(2,-1)$ and are
a．parallel to the line $2 x-3 y=5$
b．perpendicular to the line $2 x-3 y=5$ ．
（See Figure P．20．）

Sol：
By writing the linear equation $2 x-3 y=5$ in slope－intercept form，$y=\frac{2}{3} x-\frac{5}{3}$ ，you can see that the given line has a slope of $m=\frac{2}{3}$ ．
a．The line through $(2,-1)$ that is parallel to the given line also has a slope of $\frac{2}{3}$ ．

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Point-slope form } \\
y-(-1) & =-\frac{3}{2}(x-2) & & \text { Substitute. } \\
2(y+1) & =-3(x-2) & & \text { Simplify. } \\
3 x+2 y-4 & =0 & & \text { General form }
\end{aligned}
$$

$(\%$ i52 $) f(m):=m^{*}(x-x 1)+y 1$ ；
（8．52） $\mathrm{f}(\mathrm{m}):=m(\mathrm{x}-\mathrm{x} 1)+\mathrm{y} 1$
（\％i53）f（2／3）；
（80．53）$y 1+\frac{2(x-x 1)}{3}$
$(\% i 54) f(x 1, y 1):=y 1+(2 / 3) *(x-x 1) ;$
（8．54） $\mathrm{f}(\mathrm{x} 1, \mathrm{y} 1):=y 1+\frac{2}{3}(\mathrm{x}-\mathrm{x} 1)$
（\％i55）f（2，－1）；
$(8055) \frac{2(x-2)}{3}-1$
b．Using the negative reciprocal of the slope of the given line，you can determine that the slope of a line perpendicular to the given line is $-\frac{3}{2}$ ．So，the line through the point $(2,-1)$ that is perpendicular to the given line has the following equation．

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-(-1) & =-\frac{3}{2}(x-2) \\
2(y+1) & =-3(x-2) \\
3 x+2 y-1 & =0
\end{aligned}
$$

Point-slope form
Substitute.
Simplify.
General form
（\％i56）f（m）：＝m＊$(x-x 1)+y 1$ ；
$(8056) \mathrm{f}(m):=m(\mathrm{x}-\mathrm{x} 1)+\mathrm{y} 1$
（\％i57）f（－3／2）；

$$
\text { (8057) } y 1-\frac{3(x-x 1)}{2}
$$

（\％i60）f（x1，y1）：＝y1－（3／2）＊（x－x1）；

$$
(8060) \mathrm{f}(\mathrm{x} 1, \mathrm{y} 1):=y 1-\frac{3}{2}(\mathrm{x}-\mathrm{x} 1)
$$

（\％i63）f（2，－1）；

$$
(8063)-\frac{3(x-2)}{2}-1
$$

（\％i68） $\mathrm{F}(\mathrm{x}):=(-3 / 2) *(x-2)-1$ ；
$H(x):=(2 / 3) *(x-2)-1$ ；
$G(x):=(2 / 3) * x-(5 / 3) ;$
plot2d（［F，H，G］，［x，－4，4］，［y，－3，3］）；

$$
\text { (8068) } F(x):=\frac{-3}{2}(x-2)-1
$$

（웅ㄱ 69）

$$
\begin{aligned}
& (8069) \quad H(x):=\frac{2}{3}(x-2)-1 \\
& (8070) G(x):=\frac{2}{3} x-\frac{5}{3}
\end{aligned}
$$

plot2d：some values were clipped． plot2d：some values were clipped． plot2d：some values were clipped． （8．071）

